Question 1

Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric $n \times n$ matrix. Prove the following:

- The eigenvalues of A are real
- The eigenvectors corresponding to distinct eigenvalues are orthogonal

Assume now that in the case of repeated eigenvalues the eigenvectors are *still* orthogonal (i.e., for $\lambda_i = \lambda_j$ it is still the case that the corresponding eigenvectors \mathbf{v}_i and \mathbf{v}_j are orthogonal). Prove the following properties of the eigenvector matrix $\mathbf{V} = [\mathbf{v}_1 \cdots \mathbf{v}_n]$:

- **V** is an *orthoogonal* matrix, i.e., $\mathbf{V}^{-1} = \mathbf{V}^T$
- $V^TAV = \Lambda$ where Λ is a diagonal matrix of eigenvalues

Question 2

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a real matrix. Prove the following results:

- The general solution of the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p$ where \mathbf{x}_h is the *homogeneous* solution and satisfies $\mathbf{A}\mathbf{x}_h = \mathbf{0}$ and \mathbf{x}_p is the *particular solution* and satisfies $\mathbf{A}\mathbf{x}_p = \mathbf{b}$
- In the case where **A** is *square*, the unique solution to the linear system $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ and this solution exists if and only if the matrix **A** is nonsingular.

Question 3

Let $A, B \in \mathbb{R}^{n \times n}$ be constant $n \times n$ matrices. Furthermore, let a(s) and b(s) each be arbitrary polynomials in s of degree m. Prove the following result:

$$a(\mathbf{A})b(\mathbf{B}) = b(\mathbf{B})a(\mathbf{A}) \Longleftrightarrow \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$$

Question 4

Let $A \in \mathbb{R}^{n \times n}$ be a constant $n \times n$ matrix. Prove that the matrix exponential e^A can be written as a linear combination of powers of A of degree n-1 or less, i.e.,

$$e^{\mathbf{A}} = \sum_{k=0}^{n-1} \alpha_k \mathbf{A}^k$$

where α_k , (k = 0, ..., n - 1) are real numbers.

Question 5

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be an $n \times n$ real matrix. Furthermore, let $\mathbf{L}(\mathbf{A}) = \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A}$ be a matrix operator whose input argument is \mathbf{A} . Show that \mathbf{L} is a linear operator.

Question 6

Let $A \in \mathbb{R}^{n \times n}$ be an $n \times n$ real square matrix. Furthermore, let x be an eigenvector of A with eigenvalue λ . Prove that

$$\mathbf{A}^k \mathbf{x} = \lambda^k \mathbf{x}$$

for all $k \geq 1$.

Question 7

Let p(s) be a polynomial of degree n in $s \in \mathbb{C}$. Furthermore, let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an $n \times n$ real square matrix. Finally, let λ be an eigenvalue of \mathbf{A} with eigenvector \mathbf{x} . Prove that $p(\lambda)$ is an eigenvalue of $p(\mathbf{A})$ with eigenvector \mathbf{x} .

Question 8

Let $A \in \mathbb{R}^{n \times n}$ be an $n \times n$ real matrix. Suppose that the eigenvectors of A form a complete set, i.e., $\operatorname{span}(\mathbf{v}_1 \cdots \mathbf{v}_n) = \mathbb{R}^n$ (i.e., the set of eigenvectors $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ form a linearly independent set that spans \mathbb{R}^n). Prove the following result:

$$\mathbf{D} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V}$$

where $V = [v_1 \cdots v_n]$ is the matrix of eigenvectors and $D = diag(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix whose diagonal elements are the eigenvalues of A.

Question 9

Let p(s) be a polynomial in $s \in \mathbb{C}$ of degree n. Furthermore, let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an arbitrary square matrix. Finally, let $\mathbf{T} \in \mathbb{R}^{n \times n}$ be a nonsingular square matrix. Prove that

$$p(\mathbf{T}^{-1}\mathbf{A}\mathbf{T}) = \mathbf{T}^{-1}p(\mathbf{A})\mathbf{T}$$

Question 10

Prove the following properties of the state transition matrix $\Phi(t, \tau)$:

(a)
$$\Phi(t,\tau) = \Phi(t,t_1)\Phi(t_1,\tau)$$

(b)
$$\Phi(t,\tau) = \Phi^{-1}(\tau,t)$$

(c)
$$\frac{\partial \mathbf{\Phi}(t,\tau)}{\partial t} = \mathbf{A}(t)\mathbf{\Phi}(t,\tau)$$

(d)
$$\frac{\partial \mathbf{\Phi}(t,\tau)}{\partial \tau} = -\mathbf{\Phi}(t,\tau)\mathbf{A}(\tau)$$

(e) $\Phi(t,\tau)$ is nonsingular $\forall t$ and τ

Question 11

Let $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ be a linear time-invariant system with initial condition $\mathbf{x}(0) = \mathbf{x}_0$. The solution of this system can be written implicitly in integral form as

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{A}\mathbf{x}(\tau)d\tau$$

Suppose now that we use the following iterative procedure to solve the problem:

$$\mathbf{x}^{(k+1)}(t) = \mathbf{x}(0) + \int_0^t \mathbf{A}\mathbf{x}^{(k)}(\tau)d\tau$$

where $\mathbf{x}^{(k)}(t)$ is the solution of the k^{th} iteration ($k \ge 0$). Assuming that the zeroth iteration is $\mathbf{x}^{(0)} = \mathbf{x}_0$, prove the following result:

$$\lim_{k \to \infty} \mathbf{x}^{(k)}(t) = \mathbf{x}(t) = e^{\mathbf{A}t} \mathbf{x}_0$$

Repeat the procedure for $\mathbf{x}^{(0)} = \bar{\mathbf{x}} \neq \mathbf{x}_0$. How does your result differ in the second case as compared to the first case?