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Anil V. Rao†

Department of Mechanical and Aerospace Engineering

University of Florida

Gainesville, FL 32611

A Radau pseudospectral method is derived for solving state-inequality path constrained
optimal control problems. The continuous-time state-inequality path constrained optimal
control problem is modified by applying a set of tangency conditions at the entrance of
the activity of the path constraint. It is shown that the first-order optimality condition of
the nonlinear programming problem associated with the Radau pseudospectral method is
equivalent to the Radau pseudospectral discretized first-order optimality conditions of the
modified continuous-time optimal control problem. The method is applied to a classical
state-inequality path constrained optimal control problem and it is found that the solution
accuracy is improved significantly when compared with the accuracy of the solution ob-
tained using the original Radau pseudospectral discretization.

I. Introduction

Over the past two decades direct collocation methods have become increasingly popular in the
numerical solution of complex constrained optimal control problems because they avoid many of
the limitations associated with indirect methods. In even more recent years, a great deal of re-
search has been done on the class of direct collocation pseudospectral methods.3, 12, 16, 18–21 In a pseu-
dospectral method, the state is approximated using a basis of either Lagrange of Chebyshev poly-
nomials and the dynamics are collocated at points associated with a Gaussian quadrature. The
most common collocation points, which are the roots of a linear combination of Legendre poly-
nomials or derivatives of Legendre polynomials, are Legendre-Gauss (LG), Legendre-Gauss-Radau
(LGR), and Legendre-Gauss-Lobatto (LGL) points. All three types of Legendre-Gauss quadrature
points are defined on the domain τ ∈ [−1, 1], but differ significantly in that the LG points include
neither of the endpoints, the LGR points include one of the endpoints, and the LGL points include
both of the endpoints. In addition, the LGR points are asymmetric relative to the origin and are
not unique in that they can be defined using either the initial point or the terminal point.

One important class of optimal control problems that can pose significant computational chal-
lenges using either an indirect or direct method are problems with active inequality path con-
straints.26, 30 Problems with active state- and control-inequality path constraints can result in a
discontinuous optimal control, while problems with state-inequality path constraints can result in
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a non-smooth state and/or a discontinuous costate. When an inequality path constrained optimal
control problem is solved using an indirect method, the first-order optimality conditions from the
calculus of variations must be modified in order to properly account for possible discontinuities
in the optimal solution. On the other hand, when a direct method is used to solve an inequality
path-constrained optimal control problem, the state is generally approximated using a piecewise
smooth function and any possible discontinuities may not be located at a mesh point that defines
the junction between two piecewise smooth segments.

In this paper we develop a new direct collocation approach for accurately solving continuous-
time optimal control problems with state-inequality path constraints. The approach is motivated
by the results of Ref. 35 where it was shown that the accuracy of the pseudospectral costate esti-
mate can be quite poor due to discontinuities that arise in the presence of active state-inequality
path constraints. The method developed in this paper utilizes a modified version of the Radau
pseudospectral method.18–20 Specifically, the optimal control problem is divided into a mesh such
that the times of the mesh points are included as variables in the optimal control problem. This
leads to an optimal control problem where it is desired to determine not only the optimal state and
control in each mesh interval, but it is also desired to determine the optimal values of mesh point
times. Furthermore, the standard Radau pseudospectral method is reformulated by including a
set of tangency conditions26) that define the conditions at the start of the constrained arc.

II. Continuous Bolza Optimal Control Problem

Consider the following continuous-time state-inequality path constrained optimal control prob-
lem on the domain t ∈ [t0, tf ] = I, where I has been divided into K mesh intervals Sk =
[Tk−1, Tk] ⊆ [t0, tf ], (k = 1, . . . ,K), where T0 = t0, TK = tf , Tk−1 < Tk, (k = 1, . . . ,K), and
⋃K

k=1 Sk = I. Furthermore, without loss of generality we can transform the independent variable
in each mesh interval from t ∈ [Tk−1, Tk] to τ (k) ∈ [−1,+1] via the affine transformation

t =
Tk − Tk−1

2
τ (k) +

Tk + Tk−1

2
(1)

The optimal control problem is then stated as follows. Determine the state, y(k)(τ (k);Tk−1, Tk) ∈
R
n and the control, u(k)(τ (k);Tk−1, Tk) ∈ R

m, in mesh intervals k ∈ [1, . . . ,K] that minimize the
cost functional

J = Φ(y(1)(T0), T0,y
(K)(TK), TK)

+
K
∑

k=1

Tk − Tk−1

2

∫ +1

−1
g(y(k)(τ (k);Tk−1, Tk),u

(k)(τ (k);Tk−1, Tk), τ
(k);Tk−1, Tk)dτ

(2)

subject to the dynamic constraint

Tk − Tk−1

2
f(y(k)(τ (k);Tk−1, Tk),u

(k)(τ (k);Tk−1, Tk), τ
(k);Tk−1, Tk)

−∇τy
(k)(τ (k);Tk−1, Tk) = 0, (k = 1, . . . ,K),

(3)

the boundary condition

φ(y(1)(T0), T0,y
(K)(TK), TK) = 0, (4)

and the state-inequality path constraint

C(y(k)(τ (k);Tk−1, Tk), τ
(k);Tk−1, Tk) ≤ 0, (k = 1, . . . ,K). (5)
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From this point forth the optimal control problem defined in Eqs. (2)–(5) will be denoted prob-
lem P . We note that generality is not lost in problem P by considering a scalar state-inequality
path constraint because our approach can be applied to a vector inequality path constraint by con-
sidering each component individually. Furthermore, we consider the specific case of three mesh
intervals (that is, K = 3) such that on the optimal solution the state-inequality path constraint is in-
active in the first mesh interval, active in the second interval, and again inactive in the third mesh
interval, and the switch times in the path constraint occur at unknown times T1 ∈ I and T2 ∈ I ,
T1 < T2. The state-inequality path constraint in problem P can be replaced by the conditions

ψ(y(2)(T1), T1) = 0. (6)

where

ψ(y(2)(τ (2);T1, T2), τ ;T1, T2) ≡













C(y(2)(τ (2);T1, T2), τ
(2);T1, T2)

∇τC(y(2)(τ (2);T1, T2), τ
(2);T1, T2)

...

∇q−1
τ C(y(2)(τ (2);T1, T2), τ

(2);T1, T2)













(7)

along with the following state and control equality path constraint:

∇q
τC(y(2)(τ (2);T1, T2),u

(2)(τ (2);T1, T2), τ
(2);T1, T2) = 0. (8)

The method described in this paper is then developed using the following modification of problem
P . Minimize the cost functional of Eq. (2) subject to the dynamic constraint of Eq. (3), the boundary
conditions of Eq. (4) and (6), and the path constraint of Eq. (8). This modified optimal control
problem will be referred to henceforth as problem M. It is seen that, unlike problem P , problem
M contains an interior-point constraint due to the tangency conditions that determine the start of
the segment where the inequality path constraint is binding at the optimal solution.

The first-order optimality conditions of problem M obtained using the calculus of variations
are given as26

0 = ∇uH
(k), (k = 1, 2, 3), (9)

∇τλ
(k) = −

Tk − Tk−1

2
∇yH

(k), (k = 1, 2, 3), (10)

λ(1)(T0) = −∇y(1)(T0)
(Φ− 〈υ,φ〉), (11)

λ(2)(T1) = λ(1)(T1) +∇y(1)(T1)
〈ω,ψ〉, (12)

λ(3)(T2) = λ(2)(T2), (13)

λ(3)(T3) = ∇y(3)(T3)
(Φ− 〈υ,φ〉), (14)

H(1)(T0) = ∇T0(Φ− 〈υ,φ〉) = −
T1 − T0

2

∫ +1

−1
∇T0H

(1)dτ +
1

2

∫ +1

−1
H(1)dτ, (15)

H(2)(T1) = H(1)(T1)−∇T1〈ω,ψ〉, (16)

H(3)(T2) = H(2)(T2), (17)

H(3)(T3) = −∇T3(Φ− 〈υ,φ〉) =
T3 − T2

2

∫ +1

−1
∇T3H

(3)dτ +
1

2

∫ +1

−1
H(3)dτ, (18)

where λ(τ) ∈ R
n is the costate, γ(τ) ∈ R is the Lagrange multiplier associated with the path

constraint of Eq. (8), υ ∈ R
p is the Lagrange multiplier associated with the boundary condition of

Eq. (4), ω ∈ R
q is the Lagrange multiplier associated with the tangency conditions of Eq. (6), and

H(k) = g(k) + 〈λ(k), f(k)〉, (k = 1, 3),

H(k) = g(k) + 〈λ(k), f(k)〉 − 〈γ(k),∇q
τC

(k)〉, (k = 2)
(19)
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is the augmented Hamiltonian.

III. Radau Pseudospectral Method for Problem M

We now discretize problem M using the previously developed Radau pseudospectral method.18–20

In the Radau pseudospectral method, the state and its time derivative are approximated, respec-
tively, in each mesh interval Sk, (k = 1, . . . ,K), as

y(k)
(

τ (k);Tk−1, Tk

)

≈ Y(k)
(

τ (k)
)

=

Nk+1
∑

i=1

Y
(k)
i L

(k)
i

(

τ (k)
)

,

∇τ (k)y
(k)

(

τ (k);Tk−1, Tk

)

≈ ∇τ (k)Y
(k)

(

τ (k)
)

=

Nk+1
∑

i=1

Y
(k)
i ∇τ (k)L

(k)
i

(

τ (k)
)

,

(20)

where
(

τ
(k)
1 , . . . , τ

(k)
Nk

)

are the LGR points defined on τ ∈ [−1,+1) in mesh interval Sk, τ
(k)
Nk+1 = +1

is a non-collocated point, L
(k)
i (τ), (i = 1, . . . , Nk + 1) is a basis of Nk + 1 Lagrange polynomials

with support points at
(

τ
(k)
1 , . . . , τ

(k)
Nk+1

)

and defined as

L
(k)
i

(

τ (k)
)

=

Nk+1
∏

j=1

j 6=i

τ (k) − τ
(k)
j

τ
(k)
i − τ

(k)
j

. (21)

Problem M is then approximated by the following nonlinear programming problem (NLP, de-
fined as problem N ). Minimize the cost function

Φ(Y
(1)
1 , T0,Y

(3)
N3+1, T3) +

3
∑

k=1

Nk
∑

j=1

Tk − Tk−1

2
w

(k)
j g(Y

(k)
j ,U

(k)
j , τ

(k)
j ;Tk, Tk−1) (22)

subject to the algebraic constraints

Tk − Tk−1

2
f(Y

(k)
i ,U

(k)
i , τ

(k)
i ;Tk, Tk−1)−

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j = 0, (i = 1, . . . , Nk), (23)

∇q
tC(Y

(2)
j ,U

(2)
j , τ

(2)
j ;T2, T1) = 0, (i = 1, . . . , N2), (24)

φ(Y
(1)
1 , T0,Y

(3)
N3+1, T3) = 0, (25)

ψ(Y
(2)
1 , T1) = 0, (26)

where D
(k)
ij = ∇τL

(k)
i

(

τ
(k)
j

)

, (i = 1, . . . , Nk, j = 1, . . . , Nk + 1) is the Nk × (Nk + 1) Radau

pseudospectral differentiation matrix18 in mesh interval k, and w
(k)
j (j = 1, . . . , Nk) are the LGR

weights in mesh interval k.
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A. First-Order Optimality Conditions and Transformed Adjoint System of Problem N

The first-order optimality conditions of problem N can be written as (see Ref. 36 for details)

0 = ∇UH
(k)
j ,

(k = 1, 2, 3),

(j = 1, . . . , Nk),
(27)

D
†(1)
j λ

(1)
1:N1

= −
T1 − T0

2
∇Y H

(1)
j +

δ1j

w
(1)
1

(

−∇
Y

(1)
1

(Φ− 〈υ,φ〉)− λ
(1)
1

)

, (j = 1, . . . , N1), (28)

D
†(2)
j λ

(2)
1:N2

= −
T2 − T1

2
∇Y H

(2)
j +

δ1j

w
(2)
1

(

∇
Y

(2)
1

〈ω,ψ〉+ λ
(1)
N1+1 − λ

(2)
1

)

, (j = 1, . . . , N2), (29)

D
†(3)
j λ

(3)
1:N3

= −
T3 − T2

2
∇Y H

(3)
j −

δ1j

w
(3)
1

(

λ
(2)
N2+1 − λ

(3)
1

)

, (j = 1, . . . , N3), (30)

λ
(3)
N3+1 = ∇

Y
(3)
N3+1

(Φ− 〈υ,φ〉) , (31)

H
(1)
1 = ∇T0(Φ− 〈υ,φ〉), (32)

H
(2)
1 = H

(1)
N1+1 −∇T1〈ω,ψ〉, (33)

H
(3)
1 = H

(2)
N2+1, (34)

H
(3)
N3+1 = −∇T3(Φ− 〈υ,φ〉), (35)

where

H(k)(Tk−1) ≈ H
(k)
1 = −

Tk − Tk−1

2

Nk
∑

j=1

w
(k)
j ∇Tk−1

H
(k)
j +

1

2

Nk
∑

j=1

w
(k)
j H

(k)
j

H(k)(Tk) ≈ H
(k)
Nk+1 =

Tk − Tk−1

2

N1
∑

j=1

∇Tk
w

(k)
j H

(k)
j +

1

2

Nk
∑

j=1

w
(k)
j H

(k)
j

, (k = 1, 2, 3).

Now using the property of D(k), (k = 1, 2, 3) that D
(k)
Nk+1 = −D

(k)
1:N1 (see Ref. 18), where 1 is a

column vector of all ones, we obtain

λ
(k)
Nk+1 = λ

(k)
1 +

Tk − Tk−1

2

Nk
∑

j=1

w
(k)
j D

†(k)
j λ(k). (36)

Combining Eqs. (28)–(30) with Eq. (36), we obtain

λ
(1)
N1+1 = −∇

Y
(1)
1

(Φ+ 〈υ,φ〉)−
T1 − T0

2

N1
∑

j=1

w
(1)
j ∇Y H

(1)(Yj ,Uj ,λj , γj), (37)

λ
(2)
N2+1 = ∇

Y
(2)
1

〈ω,ψ〉+ λ
(1)
N1+1 −

T2 − T1

2

N2
∑

j=1

w
(2)
j ∇Y H

(2)(Yj ,Uj ,λj , γj), (38)

λ
(3)
N3+1 = λ

(2)
N2+1 −

T3 − T2

2

N3
∑

j=1

w
(3)
j ∇Y H

(3)(Yj ,Uj ,λj , γj), (39)

In Eqs. (37)–(39) a Legendre-Gauss-Radau quadrature is used as an approximation of the integral
of the costate dynamics, that is,

λ(k)(Tk) = λ
(k)(Tk−1)+

Tk − Tk−1

2

∫ +1

−1
−∇yH

(k)dτ ⇐⇒ λ
(k)
Nk+1 ≈ λ

(k)
1 −

Tk − Tk−1

2

Nk
∑

j=1

w
(k)
j ∇Y H

(k)
j
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has been used in each mesh interval. Thus, from Eqs. (37)–(39) we obtain

λ(1)(T0) ≈ λ
(1)
1 = −∇

Y
(1)
1

(Φ− 〈υ,φ〉) , (40)

λ(2)(T1) ≈ λ
(2)
1 = λ(1)(T1) +∇

Y
(2)
1

〈ω,ψ〉, (41)

λ(3)(T2) ≈ λ
(3)
1 = λ(2)(T2). (42)

Equations (40)–(42) show that the second terms on the right-hand sides of Eqs. (28)–(30) are ap-
proximately zero. This shows an equivalence between the transformed adjoint system of the finite
dimensional NLP given by problem N and the first-order optimality conditions of the continuous-
time optimal control problem M.

IV. Example

Consider the following optimal control problem, denoted E , obtained from Ref. 26:

E :































Minimize 1
2

∫ 1

0
u2dt subject to

















∇tx = v,

∇tv = u,

x(0) = x(1) = 0,

v(0) = −v(1) = 1,

x(t) ≤ ℓ.

(43)

It is seen that the second derivative of the state-inequality path constraint x(t) ≤ ℓ is an explicit
function of the control variable. Consequently, the original state-inequality path constraint can be
replaced by the tangency conditions

ψ(x(T1), T1) =

[

x(T1)− ℓ

v(T1)

]

= 0 (44)

and control equality path constraint

u(t) = 0, t ∈ [T1, T2]. (45)

The modified version of problem E , denoted problem F is then given as follows:

F :















































Minimize 1
2

∫ 1

0
u2dt subject to

























∇tx = v,

∇tv = u,

x(0) = x(1) = 0,

v(0) = −v(1) = 1,

x(T1) = 0,

v(T1) = 0,

u(t) = 0 t ∈ [T1, T2].

(46)

It is known for this example that the inequality path constraint is inactive for ℓ > 1/4, is active at
only a single point for 1/6 < ℓ ≤ 1/4, and is active along a nonzero duration arc for 0 < ℓ ≤ 1/6.
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In the case where 0 < ℓ ≤ 1/6, the optimal solution is

x∗(t) =















ℓ
[

1−
(

1− t
3ℓ

)3
]

,

ℓ,

ℓ
[

1−
(

1− 1−t
3ℓ

)3
]

,

0 ≤ t ≤ 3ℓ,

3ℓ ≤ t ≤ 1− 3ℓ,

1− 3ℓ ≤ t ≤ 1,

λ∗
x(t) =

{

2
9ℓ2

,

− 2
9ℓ2

,

0 ≤ t ≤ 3ℓ,

3ℓ ≤ t ≤ 1,

v∗(t) =











(

1− t
3ℓ

)2
,

0,

−
(

1− 1−t
3ℓ

)2
,

0 ≤ t ≤ 3ℓ,

3ℓ ≤ t ≤ 1− 3ℓ,

1− 3ℓ ≤ t ≤ 1,

λ∗
v(t) =

{

2
3ℓ

(

1− t
3ℓ

)

,
2
3ℓ

(

1− 1−t
3ℓ

)

,

0 ≤ t ≤ 3ℓ,

3ℓ ≤ t ≤ 1,
,

u∗(t) =











− 2
3ℓ

(

1− t
3ℓ

)

,

0,

− 2
3ℓ

(

1− 1−t
3ℓ

)

,

0 ≤ t ≤ 3ℓ,

3ℓ ≤ 1− 3ℓ,

1− 3ℓ ≤ t ≤ 1

A. Solutions to Problems E and F

Solutions are now presented to problems E and F given in Eqs. (43) and (46), respectively), using
the version of the Radau pseudospectral method presented in Section III. In order to compare
the results obtained using the method developed in this paper against other standard formula-
tions, problem E was solved using both fixed and variable mesh points (referred to henceforth
as problems “EF ” and “EV ”) while problem F [that is, the formulation developed in this paper
and referred to henceforth as problem “FV ”] was solved using variable mesh points. When fixed
mesh points were used, the interior mesh points were placed at T1 = 1/3 and T2 = 2/3. When
variable mesh points were used, T1 and T2 were variables in both the continuous optimal control
problem and the Radau pseudospectral discrete approximation. Because the optimal solution to
this problem is a piecewise cubic, quadratic, and cubic polynomial in the first, second, and third
mesh intervals, respectively, all three problems were solved using N1 = 3, N2 = 2, and N3 = 3
LGR points. All problems were solved using the NLP solver SNOPT.37 In all results that follows
the state and costate are approximated using the piecewise Lagrange interpolating polynomial
approximations.

Figure 1 shows the state and control for all three aforementioned problems. From these results,
it is seen that even though the discrete solution to problem EV satisfies all the constraints at the
collocation points, it is highly inaccurate and does not satisfy the inequality path constraint x(t) ≤ ℓ
once it is interpolated. Next, it is seen that the solution of problem FV which corresponds to
the method developed in this paper presented in Section III, produces an accurate state, control,
and costate. Importantly, it is seen that including the tangency conditions and treating the mesh
points as variables in the nonlinear programming problem (NLP), an accurate approximation to
the start and terminus times of the path constraint activity is obtained, therefore capturing the
discontinuities in the solution.

It can be shown that the discontinuity in the optimal costate is not unique. Specifically, this dis-
continuity can occur at either the entrance, exit, or both the entrance and the exit of a constrained
arc. The problem formulation described in this paper (namely, problem FV in the case of this ex-
ample), uniquely defines the costate discontinuity in such a manner that it will always occurs at
only the start of the constrained arc. Thus, the method developed in this paper leads to solutions
that resemble those described in Ref. 26. When solving problem E , however, the discontinuity in
the optimal costate is not uniquely defined and, as a result, it may be possible that the NLP solver
will converge to one of the other possible solutions. Figure 2 shows the costate obtained for both
these possible solutions. In particular, it is seen that the optimal costate obtained when solving
problem FV contains a single discontinuity at the entrance of the constrained arc, while the op-
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timal costate obtained when solving problem E contains discontinuities at both the entrance and
exit of the constrained arc.
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Figure 1: Radau pseudospectral solutions of the state, (x(t), v(t)), and control u(t), for example
obtained by solving problems EF , EV , and FV .
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Figure 2: Radau pseudospectral solutions of the costate, (λx(t), λv(t)), for example obtained by
solving problems EF , EV , and FV .
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V. Conclusions

A direct collocation Radau pseudospectral method has been developed to discretize a state-
inequality path constrained continuous-time optimal control problem. It was shown that by mod-
ifying the original state-inequality path constrained, adding a set of conditions that define the
start of the constrained arc, and treating the mesh points as variables, the first-order optimality
conditions of the Radau pseudospectral nonlinear programming problem are a discrete form of
the first-order conditions obtained from the calculus of variations. A classic state-inequality con-
strained optimal control problem was studied in detail to demonstrate the improvement in the
accuracy obtained using the approach developed in this paper over an unmodified Radau pseu-
dospectral method.

References

1Vlassenbroeck, J. and Dooren, R. V., “A Chebyshev Technique for Solving Nonlinear Optimal Control Problems,”
IEEE Transactions on Automatic Control, Vol. 33, No. 4, 1988, pp. 333–340.

2Vlassenbroeck, J., “A Chebyshev Polynomial Method for Optimal Control with State Constraints,” Automatica,
Vol. 24, No. 4, 1988, pp. 499–506.

3Elnagar, G., Kazemi, M., and Razzaghi, M., “The Pseudospectral Legendre Method for Discretizing Optimal
Control Problems,” IEEE Transactions on Automatic Control, Vol. 40, No. 10, 1995, pp. 1793–1796.

4Elnagar, G. and Razzaghi, M., “A Collocation-Type Method for Linear Quadratic Optimal Control Problems,”
Optimal Control Applications and Methods, Vol. 18, No. 3, 1998, pp. 227–235.

5Elnagar, G. and Kazemi, M., “Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical
Systems,” Computational Optimization and Applications, Vol. 11, No. 2, 1998, pp. 195–217.

6Elnagar, G. N. and Razzaghi, M. A., “Pseudospectral Legendre-Based Optimal Computation of Nonlinear Con-
strained Variational Problems,” Journal of Computational and Applied Mathematics, Vol. 88, No. 2, March 1998, pp. 363–375.

7Fahroo, F. and Ross, I. M., “Costate Estimation by a Legendre Pseudospectral Method,” Journal of Guidance,
Control, and Dynamics, Vol. 24, No. 2, March–April 2001, pp. 270–277.

8Williams, P., “Jacobi Pseudospectral Method for Solving Optimal Control Problems,” Journal of Guidance, Control,
and Dynamics, Vol. 27, No. 2, March–April 2004, pp. 293–297.

9Williams, P., “Application of Pseudospectral methods for Receding Horizon Control,” Journal of Guidance, Control,
and Dynamics, Vol. 27, No. 2, 2004, pp. 310–314.

10Williams, P., “Hermite-Legendre-Gauss-Lobatto Direct Transcription Methods in Trajectory Optimization,”
Americal Astronautical Society, Spaceflight Mechanics Meeting, August 2005.

11Benson, D. A., A Gauss Pseudospectral Transcription for Optimal Control, Ph.D. thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2004.

12Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., “Direct Trajectory Optimization and Costate
Estimation via an Orthogonal Collocation Method,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, November-
December 2006, pp. 1435–1440.

13Huntington, G. T., Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2007.

14Huntington, G. T., Benson, D. A., and Rao, A. V., “Optimal Configuration of Tetrahedral Spacecraft Formations,”
The Journal of the Astronautical Sciences, Vol. 55, No. 2, April-June 2007, pp. 141–169.

15Huntington, G. T. and Rao, A. V., “Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseu-
dospectral Method,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, May-June 2008, pp. 689–698.

16Kameswaran, S. and Biegler, L. T., “Convergence Rates for Direct Transcription of Optimal Control Problems
Using Collocation at Radau Points,” Computational Optimization and Applications, Vol. 41, No. 1, 2008, pp. 81–126.

17Fahroo, F. and Ross, I. M., “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,” Journal of
Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 160–166.

18Garg, D., Patterson, M. A., Darby, C. L., Francolin, C., Huntington, G. T., Hager, W. W., and Rao, A. V., “Direct
Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon Optimal Control Problems via
a Radau Pseudospectral Method,” Computational Optimization and Applications, Vol. 49, No. 2, June 2011, pp. 335–358.

19Garg, D., Patterson, M. A., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T., “A Unified Framework
for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods,” Automatica, Vol. 46, No. 11,
December 2010, pp. 1843–1851.

10 of 11

American Institute of Aeronautics and Astronautics



20Garg, D., Hager, W. W., and Rao, A. V., “Pseudospectral Methods for Solving Infinite-Horizon Optimal Control
Problems,” Automatica, Vol. 47, No. 4, April 2011, pp. 829–837.

21Rao, A. V., Benson, D. A., Darby, C. L., Francolin, C., Patterson, M. A., Sanders, I., and Huntington, G. T.,
“Algorithm 902: GPOPS, A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using the Gauss
Pseudospectral Method,” ACM Transactions on Mathematical Software, Vol. 37, No. 2, April–June 2010, pp. 22:1–22:39.

22Reddien, G. W., “Collocation at Gauss Points as a Discretization in Optimal Control,” SIAM Journal on Control
and Optimization, Vol. 17, No. 2, March 1979, pp. 298–306.

23Cuthrell, J. E. and Biegler, L. T., “On the Optimization of Differential-Algebraic Processes,” AIChe Journal, Vol. 33,
No. 8, August 1987, pp. 1257–1270.

24Cuthrell, J. E. and Biegler, L. T., “Simultaneous Optimization and Solution Methods for Batch Reactor Control
Profiles,” Computers and Chemical Engineering, Vol. 13, No. 1/2, 1989, pp. 49–62.

25Betts, J. T., “Sparse Jacobian Updates in the Collocation Method for Optimal Control Problems,” Journal of Guid-
ance, Control, and Dynamics, Vol. 13, No. 3, May–June 1990, pp. 409–415.

26Bryson, A. E., Denham, W. F., and Dreyfus, S. E., “Optimal Programming Problems with Inequality Constraints
I: Necessary Conditions for Extremal Solutions,” AIAA Journal, Vol. 1, No. 11, 1962, pp. 2544–2550.

27Dreyfus, S. E., Variational Problems with State Variable Inequality Constraints, Ph.D. thesis, Harvard University,
Cambridge, Massachussets, 1962.

28Speyer, J. L., “Necessary Conditions for Optimality For Paths Lying on a Corner,” Management Science, Vol. 19,
No. 11, July 1973.

29Jacobson, D. H., Lele, M. M., and Speyer, J. L., “New Necessary Conditions of Optimality for Control Prob-
lems with State-Variable Inequality Constraints,” Tech. rep., Division of Engineering and Applied Physics - Harvard
University, Cambridge, Massachussets, 1969.

30Speyer, J. L. and Bryson, A. E., “Optimal Programming Problems with a Bounded State Space,” AIAA Journal,
Vol. 6, No. 8, August 1968, pp. 1488–1491.

31Denham, W. F. and Bryson, A. E., “Optimal Programming Problems with Inequality Constraints II: Solution by
Steepest-Ascent,” AIAA Journal, Vol. 2, No. 1, January 1964, pp. 25–34.

32Betts, J. T. and Huffman, W. P., “Mesh Refinement in Direct Transcription Methods for Optimal Control,” Optimal
Control Applications and Methods, Vol. 19, 1998, pp. 1–21.

33Darby, C. L., Hager, W. W., and Rao, A. V., “An hp-Adaptive Pseudospectral Method for Solving Optimal Control
Problems,” Optimal Control Applications and Methods, Vol. 32, No. 4, July–August 2011, pp. 476–502.

34Darby, C. L., Hager, W. W., and Rao, A. V., “Direct Trajectory Optimization Using a Variable Low-Order Adaptive
Pseudospectral Method,” Journal of Spacecraft and Rockets, Vol. 48, No. 3, May–June 2011, pp. 433–445.

35Darby, C. L., Garg, D., and Rao, A. V., “Costate Estimation Using Multiple-Interval Pseudospectral Methods,”
Journal of Spacecraft and Rockets, Vol. 48, No. 5, September–October 2011, pp. 856–866.

36Francolin, C. and Rao, A., “Numerical Solution of State-Inequality Path Constrained Optimal Control Problems
Using a Radau Pseudospectral Method,” Automatica, submitted April 2012.

37Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimiza-
tion,” SIAM Review, Vol. 47, No. 1, January 2005, pp. 99–131.

11 of 11

American Institute of Aeronautics and Astronautics


