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Abstract

A method is presented for costate estimation in nonlinear optimal control problems
using multiple-interval collocation at Legendre-Gauss (LG) or Legendre-Gauss-Radau
(LGR) points. Transformations from the Lagrange multipliers of the nonlinear pro-
gramming problem to the costate of the continuous-time optimal control problem are
given. When the optimal costate is continuous, the transformed adjoint systems of the
nonlinear programming problems are discrete representations of the continuous-time
first-order optimality conditions. If, however, the optimal costate is discontinuous, then
the transformed adjoint systems are not discrete representations of the continuous-time
first-order optimality conditions. In the case where the costate is discontinuous, the
accuracy of the costate approximation depends on the locations of the mesh points. In
particular, the accuracy of the costate approximation is found to be significantly higher
when mesh points are located at discontinuities in the costate. Two numerical examples
are studied and demonstrate the effectiveness of using the multiple-interval collocation
approach for estimating costate in continuous-time nonlinear optimal control problems.

Nomenclature

C = Path Constraint Function
D = Gauss or Radau Pseudospectral State Differentiation Matrix
D† = Gauss or Radau Pseudospectral Costate Differentiation Matrix
f = State Dynamics Function
g = Integrand of Cost Functional
H = Augmented Hamiltonian
J = Continuous-Time Cost Functional
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K = Number of Mesh Intervals
L(τ) = Lagrange Polynomial on Time Domain τ ∈ [−1,+1]
L = Lagrangian of the Nonlinear Programming Problem
m = Dimension of Continuous-Time Control
Nk = Number of Collocation Points in Mesh Interval k
n = Dimension of Continuous-Time State
q = Dimension of Boundary Condition Function
s = Dimension of Path Constraint Function
t0 = Initial Time
tf = Final Time
t = Time in Interval [t0, tf ]
Uj = Control Approximation at Time Point τj
u(t) = Control on Time Domain t ∈ [t0, tf ]
u(τ) = Control on Time Domain τ ∈ [−1,+1]
wj = jth Legendre-Gauss or Legendre-Gauss-Radau Quadrature Weight
X(τ) = State Approximation on Time Domain τ ∈ [−1,+1]
Xj = State Approximation at Time Point τj
x(t) = State on Time Domain t ∈ [t0, tf ]
x(τ) = State on Time Domain τ ∈ [−1,+1]
Γ = Lagrange Multiplier Associated with Discretized Inequality Path Constraint
γ = Lagrange Multiplier Associated with Inequality Path Constraint
δij = Kronecker Delta Function
ε = Accuracy Tolerance
Λj = Lagrange Multiplier of Discretized Dynamic Constraint at τj
λ(τ) = Continuous Costate on the Time Domain τ ∈ [−1,+1]
λj = Costate Approximation at Time Point τj
π = Lagrange Multiplier Associated with Quadrature Constraint
ρ = Jump in the Costate at Mesh Point
τ = Transformed Time Domain [−1,+1]
Φ = Mayer Cost
φ = Boundary Condition Function
Ψ = Lagrange Multiplier Associated with the Discretized Boundary Condition
ψ = Lagrange Multiplier Associated with the Boundary Condition

1 Introduction

In the past two decades, direct collocation methods have become the preferred approach

for solving optimal control problems. In a direct collocation method, the state and/or

the control is approximated using trial (basis) functions and the continuous problem is

transcribed to a finite-dimensional nonlinear programming problem (NLP). A particular

class of direct collocation methods that has become popular in the last decade is that of

pseudospectral methods.1–18 In a pseudospectral method, the state is approximated using a

basis of Lagrange polynomials and the differential-algebraic constraint equations are enforced
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at a finite set of collocation points. The three most commonly used sets of collocation

points for pseudospectral methods are the Legendre-Gauss10–12,14,18 (LG), Legendre-Gauss-

Radau13–15,17,18 (LGR), and Legendre-Gauss-Lobatto1,3, 4, 9, 19 (LGL) points. These points

are the roots of the linear combinations of a Legendre polynomial and/or its derivatives and

correspond to the three different types of Gaussian quadrature. All three sets of points are

defined on the interval [−1, 1], but differ in how the endpoints are incorporated. LG points

do not include the points −1 or +1, the LGR points include one of the endpoints, and the

LGL points include both the endpoints.

Pseudospectral methods have typically been employed in three different ways: h meth-

ods, p methods, and hp methods. In an h method, the optimal control problem is divided

into many mesh intervals and a fixed low-degree polynomial is used in each mesh interval.

Convergence in an h method is then achieved by refining the mesh without changing the

degree of the polynomial approximation in a mesh interval. In a p method, a small number

of approximating mesh intervals (often a single mesh interval) are used and convergence is

achieved by increasing the degree of the polynomial approximation in each mesh interval. If

the solution in each mesh interval is smooth, a p method converges at an exponential rate.

Finally, an hp method is a combination of an h and a p method in that both the number

of mesh intervals and the degree of the approximating polynomial in each mesh interval are

allowed to change in order to achieve convergence to the solution of the optimal control

problem. An advantage to using an h method over a p method is that an h method NLP

is more sparse than a p method NLP. Recent research,17 however, has demonstrated that

both accuracy and computational efficiency can be gained by using an hp method over using

either an h method or a p method.

Several different h, p, and hp, pseudospectral methods have been previously developed,

with p methods being the most studied of the different approaches.1–5,7–17,19 Ref. 15 shows

the convergence rates for an h LGR method. Refs. 1–5, 7–14, 19 focus on p methods using

LG, LGR, and LGL collocation points. Ref. 16 describes a p biased hp LG method with the

key result being that a multitude of problems were accurately solved for state and control

utilizing fewer collocation points and greater sparsity as compared against a single-interval

LG p method. Ref. 17 describes an h biased LGR hp method. The key result of Ref. 17 is

that it is advantageous to use higher-degree collocation locally when it is known that the

solution within a particular mesh interval is smooth. Moreover, the approach of Ref. 17
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leads to a grid refinement algorithm where the computational sparsity of an h method is

retained while simultaneously improving the convergence rate in regions where the solution

is smooth.

While the research of Refs. 16 and 17 has demonstrated that hp methods provide accu-

rate approximations to the state and control, no methodology has been developed for costate

estimation using a general multiple-interval formulation of a pseudospectral method. The

motivation of this research is to analyze the effectiveness of hp costate estimation methods

using LG and LGR collocation points. To this end, the objective of this paper is to derive

a costate estimation approach for continuous-time nonlinear optimal control problems us-

ing multiple-interval LG and LGR pseudospectral methods, and to assess the accuracy of

the approach. In a manner similar to that of Refs. 16 and 17, the continuous-time opti-

mal control problem is transcribed to an NLP using multiple-interval versions of the Gauss

and Radau (that is, LG and LGR) pseudospectral methods.10–14 The Karush-Kuhn-Tucker

(KKT) conditions of the LG and LGR NLPs are then derived. Transformations of the NLP

Lagrange multipliers to the costate of the continuous-time optimal control problem are then

derived, leading to multiple-interval LG and LGR transformed adjoint systems.20 Because

the multiple-interval methods derived in this paper require continuity in the state at the

mesh points, the formulation is significantly different from previously developed p method

costate estimation procedures such as those found in Refs. 4, 11, 13, and 14. Specifically, for

a continuous optimal costate it is found that the LG and LGR transformed adjoint systems

are discrete representations of the continuous-time first-order optimality conditions. When

the optimal costate is discontinuous, however, the transformed adjoint systems are not dis-

crete representations of the continuous-time first-order optimality conditions if a mesh point

is at the location of discontinuity in the costate. In this latter case, it is found by example

that the costate estimate is significantly more accurate when mesh points are located at the

discontinuities than when mesh points are not placed at the discontinuities. Two examples

are studied to analyze the accuracy of the costate estimation methods derived in this paper.

In particular, the second example is a common type of problem that arises in aerospace

engineering of minimum-energy control subject to a state inequality path constraint.

This paper is organized as follows: In Section 2 we define our notation and conventions. In

Section 3 we state both the optimal control problem being approximated by our hp approach

and the corresponding first-order optimality conditions. In Section 4 we define the nonlinear
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programming problem (NLP) that arises from the hp LG and hp LGR collocation methods

used to discretize the continuous Bolza problem defined in Section 3. In addition, we derive

the first-order optimality conditions of these two NLPs and provide a transformation of the

NLP Lagrange multipliers to the costate of the continuous-time optimal control problem.

In Section 5 we study the accuracy of the costate estimation procedure on two examples.

The first example has a smooth solution while the second example has a discontinuous

optimal costate. Finally, in Sections 6 and 7 we give a discussion of results and conclusions,

respectively.

2 Conventions and Notation

For each method derived in this paper, (τ1, . . . , τNk
) ∈ [−1,+1] denote the LG or LGR

quadrature (collocation) points in interval k.21 It should be noted that the LG quadrature

points lie on the interval (−1,+1) while the LGR quadrature points lie on the interval

[−1,+1). In order to properly account for the boundary conditions, the LG method includes

the noncollocated points τ0 = −1 and τNk+1 = +1 while the LGR method includes the

noncollocated point τNk+1 = +1. The manner in which these noncollocated points are used

has been described in great detail in Refs. 13, 14, 18. For either method, the state in mesh

interval k is approximated using a basis of Lagrange polynomials

Li(τ) =

Nk+Z∏
l=Z
l 6=i

τ − τ (k)l

τi − τ (k)l

, Z ≤ i ≤ Nk, (1)

where Z = 0 for the LG method and Z = 1 for the LGR method. Next, all vector functions

of time are denoted as row vectors; that is,

y(τ) = [y1(τ), · · · , yn(τ)] ∈ Rn.

We define the approximation of the state, control, and the NLP Lagrange multipliers

corresponding to the discrete approximation to the dynamics at τ = τi as Xi, Ui, and Λi

respectively. Moreover, in the LG method, X(k) is an (Nk + 1)× n matrix corresponding to

the state at the initial point plus the LG points in mesh interval k, while in the LGR method,

X(k) is an (Nk + 1) × n matrix corresponding to the state at the LGR points and the final

point in mesh interval k. Similarly, U(k) and Λ(k) are Nk × n matrices that correspond to

the control and NLP Lagrange multipliers, respectively, at either the LG or LGR points in
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mesh interval k. Finally, the notation Ai:j attached to any matrix A denotes rows i through

j of the matrix A and Ai denotes row i of the matrix A.

In addition to the above vector and matrix conventions, the operation 〈a,b〉 is used to

denote the standard inner product between the vectors a ∈ Rn and b ∈ Rn. Furthermore,

if f : Rn −→ Rm, then ∇f is the m by n Jacobian matrix whose ith row is ∇fi. Using this

convention, the gradient of a scalar-valued function is a row vector. If φ : Rm×n −→ R

and X is an m by n matrix, then ∇φ denotes the m by n matrix whose (i, j) element is

(∇φ(X))ij = ∂φ(X)/∂Xij. Finally, the Kronecker delta function is defined by δii = 1 and

δij = 0 if i 6= j.

3 Bolza Optimal Control Problem

Without loss of generality, consider the following fixed-time nonlinear optimal control prob-

lem in Bolza form. Minimize the cost functional

J = Φ(x(t0),x(tf )) +

∫ tf

t0

g(x(t),u(t)) dt, (2)

subject to the dynamic constraints

dx

dt
= f(x(t),u(t)), (3)

the inequality path constraints

C(x(t),u(t)) ≤ 0, (4)

and the boundary conditions (i.e., the event constraints)

φ(x(t0),x(tf )) = 0, (5)

where x(t) ∈ Rn, u(t) ∈ Rm, C : Rn × Rm −→ Rs, φ : Rn × Rn −→ Rq, and t0 and tf

are fixed. Furthermore, we consider only problems where the functions g, f and C are not

explicit functions of time, and the functions Φ, and φ are not explicit functions of t0 and tf .

It is noted, however, that the results shown in this paper are easily extendable to problems

with a varying initial and/or final time and/or problems where time appears explicitly in

Eqs. (2)–(5).

Suppose now that the continuous Bolza problem of Eqs. (2)-(5) is divided into K mesh

intervals [tk−1, tk], k = 1, . . . , K, where t0 < t1 < t2 < · · · < tK = tf are the mesh points. In
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each mesh interval t ∈ [tk−1, tk] is transformed to τ ∈ [−1,+1] via the affine transformation

τ =
2t− (tk + tk−1)

tk − tk−1
, (6)

from which we obtain
dτ

dt
=

2

tk − tk−1
, 1 ≤ k ≤ K. (7)

Next, let x(k)(τ) and u(k)(τ) be the state and control, respectively, in mesh interval k. Using

Eq. (7), the Bolza optimal control problem in Eqs. (2)–(5) can be written as follows. First,

the cost functional of Eq. (2) can be written as

J = Φ(x(1)(−1),x(K)(+1)) +
K∑
k=1

tk − tk−1
2

∫ +1

−1
g(x(k)(τ),u(k)(τ)) dτ. (8)

Next, the dynamics of Eq. (3) and the path constraints of (4) are given in terms of τ in mesh

interval k ∈ [1, . . . , K], respectively, as

dx(k)(τ)

dτ
≡ ẋ(k)(τ) =

tk − tk−1
2

f(x(k)(τ),u(k)(τ)), (9)

C(x(k)(τ),u(k)(τ)) ≤ 0. (10)

Furthermore, the boundary conditions of Eq. (5) are given as

φ(x(1)(−1),x(K)(+1)) = 0. (11)

Finally, the state is assumed to be continuous at an interior mesh point, that is,

x(k)(+1) = x(k+1)(−1), 1 ≤ k ≤ K − 1. (12)

3.1 First-Order Optimality Conditions of Bolza Problem

In this section, we develop the first-order optimality conditions from the calculus of variations

for the multiple-interval continuous-time Bolza optimal control problem as given in Eqs. (8)–

(11). First, the augmented Hamiltonian in interval k is defined as

H(k)(x(k),λ(k),u(k),γ(k)) = g(k) + 〈λ(k), f (k)〉 − 〈γ(k),C(k)〉, (13)
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where λ(k)(τ) ∈ Rn and γ(k)(τ) ∈ Rs. Applying the continuous-time first-order optimality

conditions from the calculus of variations,22,23 we obtain

∇uH
(k) = ∇u

(
g(k) + 〈λ(k), f (k)〉 − 〈γ(k),C(k)〉

)
= 0, (14)

−tk − tk−1
2

∇xH
(k) = −tk − tk−1

2
∇x

(
g(k) + 〈λ(k), f (k)〉 − 〈γ(k),C(k)〉

)
= λ̇

(k)
(τ), (15)

λ(1)(−1) = −∇x(1)(−1) (Φ− 〈ψ,φ〉) , (16)

λ(K)(1) = ∇x(K)(+1) (Φ− 〈ψ,φ〉) , (17)

λ(k)(1) = λ(k+1)(−1) + ρ(k), 1 ≤ k ≤ K − 1, (18)

where ψ ∈ Rq and ρ(k) ∈ Rn is the jump (discontinuity) in the costate at the mesh points

due to active path constraints and interior point constraints. Then, from the complementary

slackness condition, the Lagrange multiplier γ(k) takes the values

γ
(k)
j (τ) = 0 when C

(k)
j (τ) < 0, 1 ≤ j ≤ s, (19)

γ
(k)
j (τ) < 0 when C

(k)
j (τ) = 0, 1 ≤ j ≤ s. (20)

4 LG & LGR Discretizations of Bolza Problem

In this section we consider the discretization of the continuous Bolza optimal control prob-

lem of Section 3 using multiple-interval versions of the previously developed Gauss (LG) and

Radau (LGR) pseudospectral methods.10–14 First, the optimal control problem is transcribed

to a finite-dimensional NLP for each discretization method. Next, the Karush-Kuhn-Tucker

(KKT) conditions of the LG and LGR NLPs, along with the corresponding transformed ad-

joint systems,20 are derived for the hp LG and hp LGR methods. We show that if the costate

is continuous, the transformed adjoint systems for both the LG and LGR hp methods are

discrete approximations of the continuous-time first-order optimality conditions. If, however,

the costate is discontinuous, we show that the LG and LGR transformed adjoint systems are

not discrete approximations of the continuous-time first-order optimality conditions.

4.1 Legendre-Gauss Discretization

In the Gauss (LG) pseudospectral method, the state is approximated in each mesh interval

k as

x(k)(τ) ≈ X(k)(τ) =

Nk∑
j=0

X
(k)
j L

(k)
j (τ). (21)
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Differentiating X(k)(τ) in Eq. (21) with respect to τ , we obtain

dX(k)(τ)

dτ
≡ Ẋ(k)(τ) =

Nk∑
j=0

X
(k)
j L̇

(k)
j (τ). (22)

Collocating the right-hand side of the state dynamics of Eq. (9) with the derivative of the

state approximation in Eq. (22) at the Nk LG points, we have

Nk∑
j=0

X
(k)
j D

(k)
ij −

tk − tk−1
2

f
(k)
i = 0, 1 ≤ i ≤ Nk (23)

where f
(k)
i = f(X

(k)
i ,U(k)

i ) and

D
(k)
ij = L̇

(k)
j (τ

(k)
i ), 1 ≤ i ≤ Nk, 0 ≤ j ≤ Nk (24)

is the Nk×(Nk+1) Gauss pseudospectral differentiation matrix 7,10–12 in the kth mesh interval.

Next, the cost functional of Eq. (8) is approximated using a multiple-interval LG quadrature

as

J ≈ Φ(X
(1)
0 ,X

(K)
NK+1) +

K∑
k=1

Nk∑
i=1

tk − tk−1
2

w
(k)
i g

(k)
i , (25)

where g(k)i = g(X
(k)
i ,U(k)

i ). The path constraints of Eq. (10) are enforced at the Nk LG

points in mesh interval k as

Ci ≡ C(X
(k)
i ,U(k)

i ) ≤ 0, 1 ≤ i ≤ Nk. (26)

Finally, the boundary conditions are approximated as

φ(X
(1)
0 ,X

(K)
NK+1) = 0. (27)

In addition, an NLP variable corresponding to the state at the terminal point of each mesh

interval k, X(k)(+1) = X
(k)
Nk+1, is included by adding the following Legendre-Gauss quadra-

ture approximation to the the state at τ = +1:

X
(k)
Nk+1 = X

(k)
0 +

tk − tk−1
2

Nk∑
i=1

w
(k)
i f

(k)
i , 1 ≤ k ≤ K. (28)

It is noted that state continuity at the mesh points k ∈ [1, . . . , K − 1] is enforced via the

constraint

X
(k)
Nk+1 = X

(k+1)
0 . (29)

When implementing the Gauss pseudospectral method, a single variable is used for the value

of the state at the end of mesh interval k and the start of mesh interval k + 1, that is,

9



X
(k)
Nk+1 ≡ X

(k+1)
0 , 1 ≤ k ≤ K − 1. Hence, redundant variables defining the state at the

interior mesh points are eliminated in the discretization and Eq. (28) can be written as

X
(k+1)
0 = X

(k)
0 +

tk − tk−1
2

Nk∑
i=1

w
(k)
i f

(k)
i , 1 ≤ k ≤ K − 1 (30)

X
(K)
NK+1 = X

(K)
0 +

tK − tK−1
2

NK∑
i=1

w
(K)
i f

(K)
i .

The NLP that arises from the Gauss pseudospectral approximation is to minimize the cost

function of Eq. (25) subject to the algebraic constraints of Eqs. (23), (26), (27) and (30).

4.2 KKT Conditions for Legendre-Gauss Discretization

The Karush-Kuhn-Tucker (KKT) conditions of the NLP of Section 4.1 are now derived. The

Lagrangian of the NLP is given as

L = Φ(X
(1)
0 ,X

(K)
NK+1)− 〈Ψ,φ(X

(1)
0 ,X

(K)
NK+1〉 (31)

+
K∑
k=1

Nk∑
j=1

(
tk − tk−1

2
w

(k)
j g

(k)
j − 〈Γ(k)

j ,C
(k)
j 〉

−〈Λ(k)
j ,D

(k)
j,1:Nk

X
(k)
1:Nk

+D
(k)
j,0 X

(k)
0 −

tk − tk−1
2

f
(k)
j 〉
)

−
K−1∑
k=1

〈π(k),X
(k+1)
0 −X

(k)
0 −

tk − tk−1
2

Nk∑
j=1

w
(k)
j f

(k)
j 〉

−〈π(K),X
(K)
Nk+1 −X

(K)
0 − tK − tK−1

2

NK∑
j=1

w
(K)
j f

(K)
j 〉,

where Λ(k), Γ(k), Ψ, and π(k) are the Lagrange multipliers associated, respectively, with the

discretized dynamic constraints of Eq. (23), the discretized path constraints of Eq. (26), the

discretized event constraints of Eq. (27), and the quadrature constraints of Eq. (30) in mesh

interval k. The KKT conditions of the NLP are obtained by differentiating L with respect to

X
(k)
j , 0 ≤ j ≤ Nk + 1, and U(k)

j , 1 ≤ j ≤ Nk, in each interval k and setting these derivatives
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equal to zero. The KKT conditions are given as

0 = ∇U

(
w

(k)
j g

(k)
j + 〈Λ(k)

j + w
(k)
j π

(k), f
(k)
j 〉 (32)

− 2

tk − tk−1
〈Γ(k)

j ,C
(k)
j 〉
)
, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk

D
(k)T

j Λ(k) =
tk − tk−1

2
∇X

(
w

(k)
j g

(k)
j + 〈Λ(k)

j + w
(k)
j π

(k), f
(k)
j 〉 (33)

− 2

tk − tk−1
〈Γ(k)

j ,C
(k)
j 〉
)
, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk

D
(1)T

0 Λ(1) − π(1) = ∇
X

(1)
0

(Φ− 〈Ψ,φ〉), (34)

D
(k)T

0 Λ(k) − π(k) = −π(k−1), 2 ≤ k ≤ K (35)

π(K) = ∇
X

(K)
NK+1

(Φ− 〈Ψ,φ〉), (36)

where D
T

j is the jth row of D
T . Next, consider the following change of variables from con-

tinuous to discrete time:

ψ = Ψ, (37)

γ
(k)
j =

Γ
(k)
j

w
(k)
j

2

tk − tk−1
, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk (38)

λ
(k)
j =

Λ(k)

w
(k)
j

+ π(k), 1 ≤ k ≤ K, 1 ≤ j ≤ Nk. (39)

Furthermore, define the matrix D†(k) as

D
†(k)
ij = −

w
(k)
j

w
(k)
i

D
(k)
ji , 1 ≤ k ≤ K, 1 ≤ i, j ≤ Nk (40)

D
†(k)
i,Nk+1 = −

Nk∑
j=1

D
†(k)
ij , 1 ≤ i ≤ Nk. (41)

From Eq. (36), the costate approximation at t = tf is obtained as

λ
(K)
NK+1 = π(K). (42)

Next, let

λ
(1)
0 = −D

(1)T

0 Λ(1) + π(1) (43)
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be the costate approximation at t = t0. Substituting the change of variables given in Eqs. (37)

(41), (42), and (43) into (32) (36), the LG transformed adjoint system is given as

0 = ∇UH(X
(k)
j ,U(k)

j ,γ
(k)
j ,λ

(k)
j ), (44)

1 ≤ k ≤ K, 1 ≤ j ≤ Nk

(D
†(k)
j,1:Nk

λ(k) +D
†(k)
j,Nk+1π

(k)) = −tk − tk−1
2

∇XH(X
(k)
j ,U(k)

j ,γ
(k)
j ,λ

(k)
j ), (45)

1 ≤ k ≤ K, 1 ≤ j ≤ Nk

λ
(1)
0 = −∇

X
(1)
0

(Φ− 〈ψ,φ〉), (46)

λ
(K)
NK+1 = ∇

X
(K)
NK+1

(Φ− 〈ψ,φ〉), (47)

π(k−1) = π(k) +
tk − tk−1

2

Nk∑
j=1

w
(k)
j ∇XH(X

(k)
j ,U(k)

j ,γ
(k)
j ,λ

(k)
j ),(48)

2 ≤ k ≤ K,

where it is noted that Eq. (48) is formed by comparing Eqs. (33) and (35) together with the

identity14

D
(k)
i,0 = −

Nk∑
j=1

D
(k)
ij , 1 ≤ i ≤ Nk. (49)

Next, setting k = K in Eq. (48) and noting that λ(K)
NK+1 = π(K), we obtain

λ
(K)
0 = π(K−1). (50)

Suppose now that the costate is continuous at the mesh points k = 1, . . . , K − 1. Then the

right-hand side of Eq. (48) is an approximation for the costate at the beginning of mesh

intervals k = 1, . . . , K − 1, that is

λ
(k+1)
0 = λ

(k)
Nk+1 = π(k), (k = 1, . . . , K − 1). (51)

It is noted that the transformed adjoint system is a discrete representation of the continuous-

time first-order necessary conditions if the costate is continuous at every mesh point.

Suppose now that the costate is discontinuous at a particular mesh pointM ∈ [1, . . . , K−
1]. Then

π(M) = λ
(M+1)
0 = λ

(M)
NM+1 − ρ(M) (52)

where ρ(M) is the difference between λ(M)
NM+1 and λ(M+1)

0 . Therefore, if the costate is discon-

tinuous at mesh point M , π(M) 6= λ
(M)
NM+1 in Eq. (45). Hence, the left-hand side of Eq. (45)

12



is not a discrete approximation to the continuous-time costate dynamics. As a result, the

transformed adjoint system given in Eqs. (44)–(48) is not a discrete representation of the

first-order optimality conditions given in Eqs. (14)–(18).

4.3 Legendre-Gauss-Radau Discretization

In the Radau (LGR) pseudospectral method, the state is approximated in each mesh interval

k as

x(k)(τ) ≈ X(k)(τ) =

Nk+1∑
j=1

X
(k)
j L

(k)
j (τ). (53)

Differentiating X(k)(τ) in Eq. (53) with respect to τ , we obtain

dX(k)(τ)

dτ
≡ Ẋ(k)(τ) =

Nk+1∑
j=1

X
(k)
j L̇

(k)
j (τ). (54)

Collocating the state dynamics of Eq. (9) with the derivative of the state approximation in

Eq. (54) at the Nk LGR points, we have

Nk+1∑
j=1

X
(k)
j D

(k)
ij −

tk − tk−1
2

f
(k)
i = 0, 1 ≤ i ≤ Nk, (55)

where

D
(k)
ij = L̇

(k)
j (τ

(k)
i ), 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk + 1 (56)

is the Nk × (Nk + 1) Radau pseudospectral differentiation matrix 13 in mesh interval k. The

cost functional of Eq. (8) is then approximated using a multiple-interval LGR quadrature as

J ≈ Φ(X
(1)
1 ,X

(K)
NK+1) +

K∑
k=1

Nk∑
i=1

tk − tk−1
2

w
(k)
i g

(k)
i . (57)

Furthermore, the path constraints of Eq. (4) are enforced at the Nk LGR points in mesh

interval k as

C
(k)
i ≡ C(X

(k)
i ,U(k)

i ) ≤ 0, 1 ≤ i ≤ Nk. (58)

Finally, the boundary conditions are approximated as

φ(X
(1)
1 ,X

(K)
NK+1) = 0. (59)

Continuity in the state at the mesh points k ∈ [1, . . . , K − 1] is imposed via the equality

constraint

X
(k)
Nk+1 = X

(k+1)
1 . (60)
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The NLP that arises from the Radau pseudospectral approximation is to minimize the cost

function of Eq. (57) subject to the algebraic constraints of Eqs. (55), (58), (59) and (60). As

with the multiple-interval form of the Gauss pseudospectral method, the same NLP variable

is used for both X
(k)
Nk+1 and X

(k+1)
1 , thus eliminating the need for Eq. (60) and removing any

redundant variables in the discretization. The constraints of Eq. (55) are then written as

D
(k)
j,1:Nk

X
(k)
1:Nk

+D
(k)
j,Nk+1X

(k+1)
1 − tk − tk−1

2
f
(k)
j = 0 1 ≤ k ≤ K − 1, (61)

D
(K)
j,1:NK

X
(K)
1:NK

+D
(K)
j,NK+1X

(K)
NK+1 −

tK − tK−1
2

f
(K)
j = 0

4.4 KKT Conditions for Legendre-Gauss-Radau Discretization

The KKT conditions of the NLP of Section 4.3 are now derived. The Lagrangian of the LGR

NLP is given as

L = Φ(X
(1)
1 ,X

(K)
NK+1)− 〈Ψ,φ(X

(1)
1 ,X

(K)
NK+1〉 (62)

+
K∑
k=1

Nk∑
j=1

tk − tk−1
2

w
(k)
j g

(k)
j − 〈Γ(k)

j ,C
(k)
j 〉

−
K−1∑
k=1

Nk∑
j=1

〈Λ(k)
j ,D

(k)
j,1:Nk

X
(k)
1:Nk

+D
(k)
j,Nk+1X

(k+1)
1 − tk − tk−1

2
f
(k)
j 〉

−
NK∑
j=1

〈Λ(K)
j ,D

(K)
j,1:NK

X
(K)
1:NK

+D
(K)
j,NK+1X

(K)
NK+1 −

tK − tK−1
2

f
(K)
j 〉

where Λ(k), Γ(K), Ψ, and are the Lagrange multipliers associated, respectively, with the

discretized dynamic constraints of Eq. (55), the discretized path constraints of Eq. (58),

and the discretized event constraints of Eq. (59) in mesh interval k, respectively. The KKT
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conditions of the multiple-interval Legendre-Gauss-Radau discretization are then given as

0 = ∇U

(
w

(k)
j g

(k)
j + 〈Λ(k)

j , f
(k)
j 〉 (63)

− 2

tk − tk−1
〈Γ(k)

j ,C
(k)
j 〉
)
, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk

D
(1)T

j Λ(1) =
t1 − t0

2
∇X

(
w

(1)
j g

(1)
j + 〈Λ(1)

j , f
(1)
j 〉 (64)

− 2

t1 − t0
〈Γ(1)

j ,C
(1)
j 〉
)
− δ1j

(
−∇

X
(1)
1

Φ +∇
X

(1)
1
〈Ψ,φ〉

)
, 1 ≤ j ≤ N1

D
(k)T

j Λ(k) =
tk − tk−1

2
∇X

(
w

(k)
j g

(k)
j + 〈Λ(k)

j , f
(k)
j 〉 (65)

− 2

tk − tk−1
〈Γ(k)

j ,C
(k)
j 〉
)
− δ1jD(k−1)T

Nk−1+1Λ
(k−1), 2 ≤ k ≤ K, 1 ≤ j ≤ Nk

D
(K)T

NK+1Λ
(K) = ∇

X
(K)
NK+1

(Φ− 〈Ψ,φ〉). (66)

Next, consider the following change of variables from continuous to discrete time:

ψ = Ψ, (67)

γ
(k)
j =

2

tk − tk−1
Γ

(k)
j

w
(k)
j

, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk, (68)

λ
(k)
j =

Λ
(k)
j

w
(k)
k

, 1 ≤ k ≤ K, 1 ≤ j ≤ Nk, (69)

π(k) = D
(k)T

Nk+1Λ
(k), 1 ≤ k ≤ K. (70)

In addition, let the matrix D†(k) be defined as

D
†(k)
11 = −D(k)

11 −
1

w
(k)
1

, (71)

D
†(k)
ij = −

w
(k)
j

w
(k)
i

D
(k)
ji otherwise. (72)

Substituting Eqs. (67)–(72) into Eqs. (63)–(66), the transformed adjoint system is given as

0 = ∇UH(X
(k)
j ,U(k)

j ,λ
(k)
j ,γ

(k)
j ), 1 ≤ k ≤ K, 1 ≤ j ≤ Nk (73)

D
†(1)
j λ(1) = −t1 − t0

2
∇XH(X

(1)
j ,U(1)

j ,λ
(1)
j ,γ

(1)
j ) (74)

+
δ1j

w
(1)
1

(−∇
X

(1)
1

Φ +∇
X

(1)
1
〈ψ,φ〉 − λ(1)

1 ),

D
†(k)
j λ(k) = −tk − tk−1

2
∇XH(X

(k)
j ,U(k)

j ,λ
(k)
j ,γ

(k)
j ) (75)

+
δ1j

w
(k)
1

(π(k−1) − λ(k)
1 ), 2 ≤ k ≤ K, 1 ≤ j ≤ Nk

π(K) = ∇
X

(K)
NK+1

(Φ− 〈ψ,φ〉). (76)
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Analogous to Ref. 13, we expand Eq. (70) using Eqs. (64) and (65) to obtain the following

relationships:

−∇
X

(1)
1

Φ +∇
X

(1)
1
〈ψ,φ〉 = π(1) +

t1 − t0
2

N1∑
j=1

w
(1)
j ∇xH(X

(1)
j ,U(1)

j ,λ
(1)
j ,γ

(1)
j ). (77)

π(k−1) = π(k) +
tk − tk−1

2

Nk∑
j=1

w
(k)
j ∇XH(X

(k)
j ,U(k)

j ,λ
(k)
j ,γ

(k)
j ). 2 ≤ k ≤ K (78)

Next, the costate approximation at t = tf is given as

λ
(K)
NK+1 = ∇

X
(K)
NK+1

(Φ− 〈ψ,φ〉) (79)

from which we obtain

λ
(K)
NK+1 = π(K). (80)

The right-hand side of Eq. (78) for k = K is then an approximation to λ(K)
1 , and therefore,

λ
(K)
1 = π(K−1). Consequently, the final term in Eq. (75) disappears for k = K. Furthermore,

if the costate is continuous at the mesh point k = K − 1, we obtain

λ
(K−1)
NK−1+1 = λ

(K)
1 = π(K−1). (81)

Furthermore, for k = K − 1, the right hand side of Eq. (78) becomes an approximation to

λ
(K−1)
1 . Thus, we have

λ
(K−1)
1 = π(K−2). (82)

If the costate is continuous at every mesh point, it then follows that

λ
(k)
Nk+1 = λ

(k+1)
1 = π(k), 1 ≤ k ≤ K − 1. (83)

As a result, the left hand side of Eq. (77) then is an approximation to the costate at t0.

Therefore, for the case when the costate is continuous at every mesh point, the final term in

Eqs. (74) and (75) disappears and the transformed adjoint system is a discrete representation

of continuous-time first-order optimality conditions.

Suppose now that the costate is discontinuous at a particular mesh pointM ∈ [1, . . . , K−
1]. Then

π(M) = λ
(M+1)
1 = λ

(M)
NM+1 − ρ(M) (84)

where ρ(M) is the difference between λ(M)
NM+1 and λ(M+1)

1 . Therefore, if the costate is discon-

tinuous at mesh point M , π(M−1) 6= λ
(M)
1 in Eq. (75). As a result, the transformed adjoint

system given in Eqs. (73)–(76) is not a discrete representation of the first-order optimality

conditions given in Eqs. (14)–(18).
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5 Examples

The costate estimation methods derived in Section 4 are now applied to two optimal control

problems that have been studied extensively. In the first example the optimal costate is

smooth, while in the second example the optimal costate is discontinuous. The purpose of

the examples is to assess the accuracy of the multiple-interval LG and LGR costate estimation

procedures as functions of the number of collocation points and the degree of the polynomial

approximation and compare them against single interval p methods. A performance analysis

on the methods is not given with respect to CPU time, number of collocation points, or NLP

density. See Ref. 16 and Ref. 17 for performance analyses of multiple-interval LG and LGR

methods.

The examples were solved using the open-source program General Pseudospectral Op-

timal Control Software7 (GPOPS) with the NLP solver SNOPT.24 All computations were

performed using a 2.5 GHz Core 2 Duo Macbook Pro running Mac OS-X 10.5.8 with MAT-

LAB R2009b. The p method discretizations were solved utilizing a fixed number of intervals

with a variable number of collocation points in each interval. For the first example and the

first part of the second example, a single interval was used. In the second part of the second

example three intervals were used and these three intervals were connected at the locations

of the costate discontinuity. The h method discretizations were solved utilizing a fixed low-

degree approximation in each interval using a variable number of intervals. The hp method

discretizations were solved utilizing a variable number of collocation points per interval and

a variable number of intervals. Throughout this section, the terminology “h− x” denotes an
h method of degree x in every mesh interval, while “hp − x” denotes an hp method with a

minimum polynomial degree of x in each interval.

5.1 Example 1

Consider the following optimal control problem taken from Ref. 13. Minimize the cost

functional

J =
1

2

∫ tf

0

(y + u2)dt (85)

subject to the dynamic constraint

ẏ = 2y + 2u
√
y (86)
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and the boundary conditions

y(0) = 2 , y(tf ) = 1, (87)

where tf = 5. The optimal state and costate for this example are y∗(t) = (x∗(t))2 and

λ∗y(t) = λ∗x(t)/(2x∗(t)), respectively, where x∗(t) and λ∗x(t) are given as x∗(t)

λ∗x(t)

 = exp(At)

 x0

λx0

 , A =

 1 −1

−1 −1

 , (88)

and

x0 =
√

2, xf = 1, (89)

B =

 B11 B12

B21 B22

 = exp(Atf ), (90)

λx0 =
xf −B11x0

B12

. (91)

In this example we analyze the costate errors using the LG and LGR p, h–2, h–3, and

h–4 methods. It is noted that the h–x methods are constructed with a uniformly distributed

grid of mesh points. Because this example has a smooth solution, it is expected that a p

method will converge the fastest. Furthermore, because the optimal costate is continuous, it

is expected that the multiple-interval LG and LGR methods (i.e., h) will provide accurate

approximations to the optimal costate because the transformed adjoint systems defined in

Section 4 are discrete representations of the continuous-time first-order optimality conditions.

Figs. 1a and 1b show the base ten logarithm of the maximum absolute costate error

as a function of the number of collocation points for LG and LGR p and h–x methods,

respectively. Because the solution to this problem is smooth (that is, x∗(t), u∗(t), and λ∗(t)

are all smooth), the p method converges the fastest using either discretization scheme. Next,

it is seen in Figs. 1a and 1b that the convergence rate using the h–x methods is much slower

than the convergence rate using the p methods. For the h–x methods, the rate of convergence

increases with the degree of approximating polynomial. A closer examination of Figs. 1a and

1b also reveals that the costate estimate using an LG h–x method converges faster than the

corresponding costate estimate using an LGR h–x method.
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5.2 Example 2

Consider the following optimal control minimum-energy optimal control problem with an

inequality state constraint taken from Ref. 23. Minimize the cost functional

J =
1

2

∫ 1

0

a2dt (92)

subject to the dynamic constraints

ẋ = v, (93)

v̇ = a, (94)

the boundary conditions

x(0) = x(1) = 0, (95)

v(0) = −v(1) = 1, (96)

and the constraint x(t) ≤ `. The optimal costate for this example is

λ∗x =


2
9`2

, 0 ≤ t ≤ 3`,

0 , 3` ≤ t ≤ 1− 3`,

− 2
9`2

, 1− 3` ≤ t ≤ 1,

(97)

λ∗v =


2
3`

(1− t
3`

) , 0 ≤ t ≤ 3`,

0 , 3` ≤ t ≤ 1− 3`,

2
3`

(1− 1−t
3`

) , 1− 3` ≤ t ≤ 1.

(98)

Unlike the optimal solution to Example 1, where the optimal solution was smooth, it is seen

in Eqs. (97) and (98) that λ∗x(t) is discontinuous while λ∗v(t) is continuous but not smooth. In

this example, we study the numerical approximations obtained for ` = 1/12. Furthermore,

we consider discretizations where no mesh points are at the locations of the discontinuity in

λ∗x(t) and discretizations where mesh points are located at the discontinuity in λ∗x(t).

5.2.1 Case 1: No Mesh Points at Costate Discontinuity

In this case we analyze LG and LGR p, uniformly spaced h–2, and hp–3 methods. In general,

mesh points will not be located exactly at a costate discontinuity. Figs. 2a–3b show the base

ten logarithm of the maximum absolute error at the collocation points for the costate as a

function of the number of collocation points using LG and LGR p methods and uniformly
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distributed h–2 methods, respectively. First, it is seen that essentially no difference is seen

in the convergence rates of the LG and LGR p and h–2 methods. Next, while λv converges

(albeit slowly), the first component of the costate does not converge when a mesh point is

not located at the discontinuity.

Suppose now that we attempt to improve the convergence of the costate by applying the

hp–3 method of Ref. 17 to this example, where it is noted that the hp–adaptive method of

Ref. 17 is designed to capture discontinuities in the control and potential nonsmoothness in

the state. Table 2 shows the maximum costate errors for various accuracy tolerances ε, while

Figs. 4a and 4b show the costate approximation and the location of the mesh points on the

final grid for ε = 10−4. While the hp–adaptive method places mesh points near the costate

discontinuity, it is seen that the approximation still leads to inaccuracies at the point of the

costate discontinuity (in particular, see the value of λx(t) at t ≈ 0.25 in Fig. 4a). Thus, even

though the hp–adaptive method refines the mesh near the discontinuity in λx, the errors in λx

are still large near the discontinuities because no mesh points are located at the discontinuity

itself. Finally, it is noted for ε = 10−6 that the errors in the state and control are O(10−6)

and O(10−3), respectively. This last fact demonstrates that placing the mesh points near

but not exactly at the point of the costate discontinuity significantly decreases the error in

the state and control, but has a significantly lesser effect on the accuracy of the costate. In

the next section we show the results when a mesh point is located at the location of the

costate discontinuity.

5.2.2 Case 2: Location of Costate Discontinuity Known

Suppose now that we use the fact that we know the locations of the discontinuities in λ∗x(t) to

aid in improving the accuracy of the costate. Specifically, let us apply the h–3 and p methods

to this problem by dividing the time interval into three segments T1 = [0, 3`], T2 = [3`, 1−3`],

and T3 = [1−3`, 1]. In the h–3 method, T1 and T3 are divided into uniformly spaced intervals

while three collocation points are used in T2. In the p method, a single mesh interval is used

in each segment T1, T2, and T3.

Figs. 5 and 6 show the maximum costate errors using the LG and LGR h–3 and pmethods

as a function of the number of mesh intervals (using the h–3 method) and as a function of

the polynomial degree (for the p method) when a mesh point is located at each of the costate

discontinuities. It is seen that the accuracy in the costate is improved dramatically when
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mesh points coincide with the discontinuities. Interestingly, the LG method produces errors

that are near machine precision using a small number of mesh intervals (in the case of the h–3

method) or using a small polynomial degree (in the case of the p method). Moreover, as the

number of approximating intervals or degree of approximation is increased, it is interesting

to see the accuracy of the LG method decreases. For the LGR method, as the number

of approximating intervals or degree of approximation is increased, the LGR method does

not significantly increase or decrease in accuracy. Rather, the LGR accuracy lies between

O(10−4) and O(10−12). Next, comparing Figs. 5a and 5b, it is seen that the errors in the

two components of the costate are nearly identical using an h − 3 method. Thus, even

though only λ∗x(t) is discontinuous while λ∗v(t) is continuous, the size of the errors in the

two components of the costate are the same because the transformed adjoint system is not

a discrete representation of the costate dynamics. Furthermore, Figs. 6a and 6b show that

using LG and LGR p methods the approximation of λ∗v(t) is slightly more accurate than the

approximation of λ∗x(t).

6 Discussion

The two examples studied in Section 5 demonstrate some of the key characteristics of the

LG and LGR hp schemes. In Example 1, where the solution is smooth, the LG and LGR

costate approximations converge using h, p, and hp methods. These results are consistent

with the fact that the costate is continuous, thereby making the LG and LGR transformed

adjoint system discrete representations of the continuous-time first-order optimality condi-

tions. Furthermore, and consistent with the fact that the solution to Example 1 is smooth,

a p method converges the most rapidly of all of the different discretization methods.

Next, the results obtained for Example 2, where the optimal costate is discontinuous,

are quite different from those obtained in Example 1. When mesh points are not located at

the discontinuities, the discontinuous components of the costate do not converge for any of

the methods. Furthermore, even for the components of the costate that are continuous, the

convergence is extremely slow. In order to improve the costate approximation in Example

2, mesh points are located at the costate discontinuities. While improving the placement

of the mesh points still does not result in the transformed adjoint systems being discrete

representations of the continuous-time first-order optimality conditions, the accuracy of the
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LG and LGR costate approximations is much higher with proper mesh point placement

than it was when no mesh points were located at the costate discontinuities. Finally, even

though in Example 2 the second component of the optimal costate was continuous, the errors

in this second costate component were similar to those of the first (discontinuous) costate

component.

In general, it is expected that the costate approximation methods derived in this paper

will lead to accurate approximations for problems whose optimal costate are continuous. In

the case where the optimal costate is discontinuous, however, the accuracy is expected to

depend greatly on the placement of the mesh points. In particular, if mesh points are not

placed at the discontinuities in the costate, it is expected that the costate errors will be large

even if the corresponding errors in the state and control are significantly smaller.

7 Conclusions

Methods have been presented for costate estimation using multiple-interval collocation at

Legendre-Gauss and Legendre-Gauss-Radau points. A mapping from the Lagrange mul-

tipliers of the multiple-interval discretized optimal control problem to the costate of the

continuous-time optimal control problem has been derived for each method. The require-

ment to enforce continuity in the state at the mesh points leads to a significantly different

transformation of the Lagrange multipliers of the pseudospectral nonlinear programming

problem than is obtained using a global pseudospectral method. If the costate is continuous,

the transformed adjoint system is a discrete representation of the continuous-time first-order

optimality conditions. If, however, the costate is discontinuous, the transformed adjoint

system is not an exact discrete representation of the continuous-time first-order optimality

conditions. It was found that, even though in the case of a discontinuous costate the trans-

formed adjoint system was not a discrete representation of the continuous-time first-order

optimality conditions, the accuracy of the approximation could be improved if mesh points

were placed at the locations of the discontinuities.
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(a) Base Ten Logarithm of Maximum Absolute Error vs. Number of Collocation
Points for the Costate Using the LG Method.
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(b) Base Ten Logarithm of Maximum Absolute Error vs. Number of Collocation
Points for the Costate Using the LGR Method.

Figure 1: Base Ten Logarithm of LG and LGR p-, h–2, h–3, and h–4 Absolute Costate
Errors for Example 1.
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(a) Base Ten Logarithm of Maximum Absolute Error in λ∗x(t) vs. Number of Collo-
cation Points Using the LG Method.
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(b) Base Ten Logarithm of Maximum Absolute Error in λ∗v(t) vs. Number of Collo-
cation Points Using the LG Method.

Figure 2: Base Ten Logarithm of LG Uniformly Spaced h–2 and p method Absolute Costate
Errors for Example 2 When Mesh Points are Not Located at the Costate Discontinuity.
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(a) Base Ten Logarithm of Maximum Absolute Error in λ∗x(t) vs. Number of Collo-
cation Points Using the LGR Method.

 

 

p

h–2

lo
g 1

0
A
b
so
lu
te

E
rr
or

Number of Collocation Points

-1

-0.5

0

0

0.5

1

-2
50 100 150

-1.5

(b) Base Ten Logarithm of Maximum Absolute Error in λ∗v(t) vs. Number of Collo-
cation Points Using the LGR Method.

Figure 3: Base Ten Logarithm of LGR Uniformly Spaced h–2 and pmethod Absolute Costate
Errors for Example 2 When Mesh Points are Not Located at the Costate Discontinuity.
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Figure 4: Costate Approximation Using hp–3 Method with ε = 10−4 for Example 2 Alongside
Optimal Solution.
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(a) Base Ten Logarithm of Maximum Absolute Error in λ∗x(t) vs. Number of Mesh
Intervals in Segments T1 and T3 Using the LG and LGR h–3 Methods.
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(b) Base Ten Logarithm of Maximum Absolute Error in λ∗v(t) vs. Number of Mesh
Intervals in Segments T1 and T3 Using the LG and LGR h–3 Methods.

Figure 5: Base Ten Logarithm of LG and LGR h–3 Method Absolute Costate Errors for
Example 2 When Mesh Points are Located at the Costate Discontinuity.
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(a) Base Ten Logarithm of Maximum Absolute Error in λ∗x(t) vs. Degree of Approx-
imating Polynomial in Segments T1, T2, and T3 Using the LG and LGR p Methods.
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(b) Base Ten Logarithm of Maximum Absolute Error in λ∗v(t) vs. Degree of Approx-
imating Polynomial in Segments T1, T2, and T3 Using the LG and LGR p Methods.

Figure 6: Base Ten Logarithm of LG and LGR p Method Absolute Costate Errors for
Example 2 When Mesh Points are Located at the Costate Discontinuity.
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ε λx λv Number of Collocation Points
10−2 1.39× 101 2.02× 10−1 30
10−4 2.32× 101 2.99× 10−2 58
10−6 1.30× 101 2.32× 10−3 87

Table 2: Summary of Maximum Absolute Costate Errors for Example 2 Using an hp–3
Method for Various Accuracy Tolerances, ε.
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