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In adirect collocation pseudospectralmethod, a continuous-time optimal control problem is transcribed to afinite-

dimensional nonlinear programming problem. Solving this nonlinear programming problem as efficiently as

possible requires that sparsity at both the first- and second-derivative levels be exploited. In this paper, a

computationally efficient method is developed for computing the first and second derivatives of the nonlinear

programming problem functions arising from a pseudospectral discretization of a continuous-time optimal control

problem. Specifically, in this paper, expressions are derived for the objective function gradient, constraint Jacobian,

and Lagrangian Hessian arising from the previously developed Radau pseudospectral method. It is shown that the

computation of these derivative functions can be reduced to computing the first and second derivatives of the

functions in the continuous-time optimal control problem. As a result, the method derived in this paper reduces

significantly the amount of computation required to obtain the first and second derivatives required by a nonlinear

programming problem solver. The approach derived in this paper is demonstrated on an example where it is found

that significant computational benefits are obtained when compared against direct differentiation of the nonlinear

programming problem functions. The approach developed in this paper improves the computational efficiency of

solving nonlinear programming problems arising from pseudospectral discretizations of continuous-time optimal

control problems.

Nomenclature

a = differential equation right-hand side function
a = thrust acceleration, 4�2 � AU=year2

b = boundary condition function
c = path constraint function
D = Radau pseudospectral differentiation matrix
g = integrand of cost functional
h = general nonlinear programming constraint function
J = continuous-time optimal control problem cost

functional
K = number of mesh intervals
m = mass, 10; 000 � lbm
_m = mass flow rate, 20; 000� � lbm=year
N = total number of collocation points
Nk = polynomial degree in mesh interval k
Nz = number of nonzero constraint Jacobian entries
nc = dimension of continuous-time path constraint
nu = dimension of continuous-time control
ny = dimension of continuous-time state
P = general matrix
Q = general matrix
p = general vector
p�t� = general vector function of time
q = general vector
q�t� = general vector function of time
r = radius, astronomical units� AU
_r = rate of change of radius, AU=year � 2�

s = time on time interval s 2 ��1;�1�
T = thrust, 20; 000� � lbm 	 AU=year
t0 = initial time
tf = terminal time
t = time on time interval t 2 �t0; tf�, dimensionless or

year=2�
Ui = approximation to control at collocation point i
u�t� = control on time domain t 2 �t0; tf �
vr = radial component of velocity, 2� � AU=year
v� = tangential component of velocity, 2� � AU=year
u1�t� = first component of control
u2�t� = second component of control
wj = j-th Legendre-Gauss-Radau quadrature weight
Y�s� = state approximation on time domain s 2 ��1;�1�
y�t� = state on time domain t 2 �t0; tf�
y�s� = state on time domain s 2 ��1;�1�
z = nonlinear programming problem decision vector
� = matrix of defect constraint Lagrange multipliers
� = matrix of nonlinear programming problem Lagrange

multipliers
� = sun gravitational parameter, 4�2 � AU3=year2

� = boundary condition Lagrange multiplier
� = nonlinear programming problem cost function
� = optimal control problem Mayer cost function
� = matrix of path constraint Lagrange multipliers
‘�k��s� = Lagrange polynomial on mesh interval s 2 �sk�1; sk�
� = angular displacement, radians
_� = rate of change of angular displacement, 2� �

radians=year

I. Introduction

OVER the past two decades, direct collocation methods have
become popular in the numerical solution of nonlinear optimal

control problems. In a direct collocation method, the state is approx-
imated using a set of trial (basis) functions, and the dynamics are
collocated at specified set of points in the time interval. Direct
collocation methods are employed either as h methods [1–5], p
methods [1–5], or hp methods [1–5]. In an h method, the state is
approximated using many fixed low-degree polynomial (e.g.,
second-degree or third-degree) mesh intervals. Convergence in an h
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method is then achieved by increasing the number of mesh intervals
[6–8]. In a p method, the state is approximated using few mesh
intervals (often a single mesh interval is used), and convergence is
achieved by increasing the degree of the polynomial [9–16]. In an hp
method, both the number of mesh intervals and the degree of the
polynomial within each mesh interval is varied, and convergence is
achieved through the appropriate combination of the number ofmesh
intervals and the polynomial degrees within each interval [17,18].

In recent years, interest has increased in using direct collocation
pseudospectral methods [9–15,19–21]. In a pseudospectral method,
the collocation points are based on accurate quadrature rules, and the
basis functions are typically Chebyshev or Lagrange polynomials.
Originally, pseudospectral methods were employed as p methods.
For problems whose solutions are smooth and well-behaved, a
pseudospectral method has a simple structure and converges at an
exponential rate [22–24]. The most well-developed p-type
pseudospectral methods are the Gauss pseudospectral method
(GPM), [11,19], the Radau pseudospectral method (RPM)
[14,15,21], and the Lobatto pseudospectral method (LPM)[9]. More
recently, it has been found that computational efficiency and
accuracy can be increased by using either an h [21] or an hp
pseudospectral method [17,25].

Although pseudospectral methods are highly accurate, proper
implementation is important in order to obtain solutions in a compu-
tationally efficient manner. Specifically, state-of-the-art, gradient-
based nonlinear programming (NLP) solvers require that first and/or
second derivatives of the NLP functions, or estimates of these
derivatives, be supplied. In a first-derivative (quasi-Newton) NLP
solver, the objective function gradient and constraint Jacobian are
used together with a dense quasi-Newton approximation of the
Lagrangian Hessian [typically a Broyden–Fletcher–Goldfarb–
Shanno (BFGS) or Davidon–Fletcher–Powell (DFP) quasi-Newton
approximation is used]. In a second-derivative (Newton) NLP solver,
the first derivatives of a quasi-Newtonmethod are used together with
an accurate approximation of the Lagrangian Hessian. Examples of
commonly-used, first-derivative NLP solvers include NPSOL [26]
and SNOPT [27,28], whereas well-known, second-derivative NLP
solvers include IPOPT [29] and KNITRO [30].

Generally speaking, first-derivative methods for solving NLPs are
more commonly used than second-derivativemethods because of the
great challenge that arises from computing an accurate approx-
imation to a Lagrangian Hessian. It is known, however, that
providing an accurate Lagrangian Hessian can significantly improve
the computational performance of an NLP solver over using a quasi-
Newton method. The potential for a large increase in efficiency and
reliability is particularly evident when the NLP is sparse. Although
having an accurate Lagrangian Hessian is desirable, even for sparse
NLPs, computing a Hessian is inefficient if not done properly.
Although current uses of pseudospectral methods have exploited
sparsity at the first-derivative level, sparsity at the second-derivative
level has not yet been fully understood or exploited.

In this paper, an efficient approach is derived for computing the
first and second derivatives of NLP functions arising from a direct
collocation pseudospectral method. Specifically, we develop expres-
sions for the objective function gradient, constraint Jacobian, and
Lagrangian Hessian corresponding to the previously-developed
RPM [14,15,17,21]. A key contribution of this paper is the elegant
structure of the pseudospectrally-discretized NLP derivative func-
tions. Moreover, it is shown that the NLP derivative functions can be
obtained by differentiating only the functions of the continuous-time
optimal control problem. Because the optimal control functions
depend uponmany fewer variables than the functions of the NLP, the
approach developed in this paper reduces significantly the compu-
tational effort required to obtain the NLP derivative functions. In
addition, the approach developed in this paper provides the complete
first- and second-derivative sparse structure of the NLP. The compu-
tational advantages of our approach over direct differentiation of the
NLP functions are demonstrated in an example using the NLP solver
IPOPT [29].

It is noted that Betts and Huffman [31] develop an approach for
exploiting sparsity in local direct collocation methods (e.g., Euler,

Hermite-Simpson, and Runge-Kutta methods). According to Betts
and Huffman, the NLP derivative functions and associated sparsity
patterns are obtained using sparse finite differences where the
functions of the optimal control problem are differentiated at the
collocation points. The work of this paper builds upon the work of
Betts and Huffman for pseudospectral methods. In particular, in this
research, we take direct advantage of the special mathematical form
of a pseudospectral method and develop expressions for the first and
second derivatives of the NLP functions. Specifically, we show that
the NLP derivatives functions can be reduced to evaluating the
derivatives of the continuous-time optimal control functions at the
discretization points (i.e., collocation points or noncollocated
endpoints). As a result, our approach reduces significantly the
amount of computational effort required to determine the NLP
derivative functions when compared with direct differentiation of the
NLP functions. Moreover, our approach is shown by example to be
much more efficient, using even finite-difference approximations
than directly differentiating the NLP functions using an efficient
automatic differentiator. In addition, finite differencing is found to be
only slightly less efficient than analytic differentiation. As a
result, our approach increases significantly the utility of direct
pseudospectral methods for solving optimal control problems.

This paper is organized as follows. In section II, we provide our
notation and conventions used throughout this paper. In section III,
we state the continuous-time Bolza optimal control problem. In
section IV, we state the RPM[14–16] that is used to derive the NLP
derivative functions. In section V, we derive expressions for the
objective function gradient, constraint Jacobian, and Lagrangian
Hessian of the NLP that arises from the discretization of the
continuous-time Bolza optimal control problem of section III using
the RPM of section IV. In section VI, we provide a discussion of the
underlying structure of the derivative functions. In section VII, we
provide an example that demonstrates the great improvement in
computational efficiency obtained using the method of this paper.
Finally, in section VIII, we provide conclusions on our work.

II. Notation and Conventions

Throughout this paper, the following notation and conventions
will be employed. All scalars will be represented by lowercase
symbols (e.g., y,u). All vector functions of timewill be treated as row
vectors and will be denoted by lowercase bold symbols. Thus, if
p�t� 2 Rn is a vector function of time, then p�t� 
 �p1�t� 	 	 	pn�t��.
Any vector that is not a function of time will be denoted as a column
vector, i.e., a static vector z 2 Rn will be treated as a column vector.
Next, matrices will be denoted by uppercase bold symbols. Thus,
P 2 RN�n is a matrix of size N � n. Furthermore, if f�p�,
f: Rn ���! Rm, is a function that maps row vectors p 2 Rn to row
vectors f�p� 2 Rm, then the result of evaluating f�p� at the points
(p1; . . . ;pN) is the matrix F 2 RN�n � �f�pk��1N ,

F 1
N � �f�pk��1N 


f�p1�
..
.

f�pN�

2
64

3
75

A single subscript i attached to a matrix denotes a particular row of
thematrix, i.e.,Pi is the i-th rowof thematrixP. A double subscript i,
j attached to a matrix denotes element located in row i and column j
of the matrix, i.e., Pi;j is the �i; j�-th element of the matrix P.
Furthermore, the notation P:;j will be used to denote all of the rows
and column j of a matrix P. Finally, PT will be used to denote the
transpose of a matrix P.

Next, let P and Q be n �m matrices. Then, the element-by-
element multiplication of P and Q is defined as

P �Q

p11q11 	 	 	 p1mq1m

..

. . .
. ..

.

pn1qn1 	 	 	 pnmqnm

2
64

3
75
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It is noted further that P �Q is not standard matrix multiplication.
Furthermore, if p 2 Rn, then the operation diag�p� denotes n � n
diagonal matrix formed by the elements of p,

diag �p� 


p1 0 	 	 	 0

0 p2 	 	 	 0

..

. ..
. . .

. ..
.

0 0 	 	 	 pn

2
6664

3
7775

Finally, the notation 0n�m represents an n �m matrix of zeros,
whereas 1n�m represents an n �m matrix of all ones.

Next, we define the notation for derivatives of functions of vectors.
First, let f�p�, f: Rn ���! R. Then, rpf�p� 2 Rn is a row vector of
length n and is defined as

rpf�p� 

�
@f
@p1
	 	 	 @f

@pn

�

Next, let f�p�, f: Rn ! Rm, where pmay be either a row vector or a
column vector and f�p� has the same orientation (i.e., either row
vector or column vector) as p. Then,rpf is them by nmatrix whose
i-th row is rpfi; that is,

rpf

rpf1

..

.

rpfm

2
64

3
75


@f1
@p1

	 	 	 @f1
@pn

..

. . .
. ..

.

@fm
@p1

	 	 	 @fm
@pn

2
664

3
775

The following conventions will be used for second derivatives of
scalar functions. Given a function, f�p;q�, where f: Rn � Rm ! R
maps a pair of row vectors, p 2 Rn and q 2 Rm, to a scalar,
f�p;q� 2 R, then the mixed second derivative, r2

pq, is an n by m
matrix,

r2
pqf


@2f
@p1@q1

	 	 	 @2f
@p1@qm

..

. . .
. ..

.

@2f
@pn@q1

	 	 	 @2f
@pn@qm

2
664

3
775
 �r2

qpf�T

Thus, for a function of the form f�p�, where f: Rn ! R we have

r2
ppf


@2f
@p2

1

	 	 	 @2f
@p1@pn

..

. . .
. ..

.

@2f
@pn@p1

	 	 	 @2f
@p2n

2
664

3
775
 �r2

ppf�T

III. Bolza Optimal Control Problem

Consider the following general optimal control problem in Bolza
form. Determine the state, y�t� 2 Rny , the control, u�t� 2 Rnu , the
initial time, t0, and the terminal time, tf, on the time interval,
t 2 �t0; tf �, that minimize the cost functional

J 
 ��y�t0�; t0; y�tf�; tf� �
Z
tf

t0

g�y�t�;u�t�; t� dt (1)

subject to the dynamic constraints

dy

dt

 a�y�t�;u�t�; t� (2)

the inequality path constraints

c min � c�y�t�;u�t�; t� � cmax (3)

and the boundary conditions

b min � b�y�t0�; t0; y�tf�; tf� � bmin (4)

The functions �, g, a, c, and b are defined by the following
mappings:

�: Rny � R � Rny � R! R; g: Rny � Rnu � R! R

a: Rny � Rnu � R! Rny ; c: Rny � Rnu � R! Rnc

b: Rny � R � Rny � R! Rnb

where we remind the reader that all vector functions of time are
treated as row vectors.

In this paper, it will be useful tomodify the Bolza problem given in
Eqs. (1–4) as follows. Let s 2 ��1;�1� be a new independent
variable. The variable t is then defined in terms of s as

t

tf � t0

2
s�

tf � t0
2

(5)

The Bolza problem of Eqs. (1–4) is then defined in terms of the
variable s as follows. Determine the state, y�s� 2 Rny , the control,
u�s� 2 Rnu , the initial time, t0, and the terminal time, tf, on the time
interval, s 2 ��1;�1�, that minimize the cost functional

J 
 ��y��1�; t0; y��1�; tf�

�
tf � t0

2

Z �1
�1

g�y�s�;u�s�; s; t0; tf� ds (6)

subject to the dynamic constraints

dy

ds


tf � t0

2
a�y�s�;u�s�; s; t0; tf� (7)

the inequality path constraints

c min � c�y�s�;u�s�; s; t0; tf� � cmax (8)

and the boundary conditions

b min � b�y��1�; t0; y��1�; tf� � bmin (9)

Suppose now that the time interval, s 2 ��1;�1�, is divided into a
mesh consisting of K mesh intervals [sk�1; sk], k
 1; . . . ; K, where
(s0; . . . ; sK) are the mesh points. The mesh points have the property
that �1
 s0 < s1 < s2 < 	 	 	 < sK 
 sf 
�1. Next, let y�k��s� and
u�k��s� be the state and control in mesh interval k. The Bolza optimal
control problem of Eqs. (6–9) can then written as follows. First, the
cost functional of Eq. (6) can be written as

J 
 ��y�1���1�; t0; y�K���1�; tf�

�
tf � t0

2

XK
k
1

Z
sk

sk�1

g�y�k����;u�k����; �; t0; tf� d�

�k
 1; . . . ; K� (10)

Next, the dynamic constraints of Eq. (7) in mesh interval k can be
written as

dy�k��s�
ds



tf � t0

2
a�y�k��s�;u�k��s�; s; t0; tf�; �k
 1; . . . ; K�

(11)

Furthermore, the path constraints of (8) in mesh interval k are given
as

c min � c�y�k��s�;u�k��s�; s; t0; tf� � cmax; �k
 1; . . . ; K�
(12)

Finally, the boundary conditions of Eq. (9) are given as

b min � b�y�1���1�; t0; y�K���1�; tf� � bmax (13)

Because the state must be continuous at each interior mesh point, it is
required that the condition, y�s�k � 
 y�s�k �, be satisfied at the interior
mesh points, (s1; . . . ; sK�1).
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IV. Radau Pseudospectral Method

The multiple-interval form of the continuous-time Bolza optimal
control problem in section III is discretized using the previously-
developedRPMas described inGarg et al. [14]. Although theRPM is
chosen, with only slight modifications, the approach developed in
this paper can be used with other pseudospectral methods (e.g., the
GPM [11,13,19] or the LPM [9]). An advantage of using the Radau
scheme is that the continuity conditions y�s�k � 
 y�s�k � across mesh
points are particularly easy to implement.

In the RPM, the state of the continuous-timeBolza optimal control
problem is approximated in each mesh interval k 2 �1; . . . ; K� as

y �k��s�  Y�k��s� 

XNk�1
j
1

Y�k�j ‘
�k�
j �s�; ‘�k�j �s� 


YNk�1
l
1l≠j

s� s�k�l
s�k�j � s

�k�
l

(14)

where s 2 ��1;�1�, ‘�k�j �s�, and j
 1; . . . ; Nk � 1 is a basis of

Lagrange polynomials, (s�k�1 ; . . . ; s
�k�
Nk
) are the Legendre-Gauss-

Radau [32] (LGR) collocation points in mesh interval k defined on

the subinterval s 2 �sk�1; sk�, and s�k�Nk�1 
 sk is a noncollocated

point. Differentiating Y�k��s� in Eq. (14) with respect to s, we obtain

dY�k��s�
ds



XNk�1
j
1

Y�k�j
d‘�k�j �s�

ds
(15)

The cost functional of Eq. (10) is then approximated using amultiple-
interval LGR quadrature as

J  ��Y�1�1 ; t0;Y
�K�
NK�1; tK�

�
XK
k
1

XNk
j
1

tf � t0
2

w�k�j g�Y
�k�
j ;U

�k�
j ; s

�k�
j ; t0; tf� (16)

where w�k�j ; j
 1; . . . ; Nk are the LGR quadrature weights [32] in

mesh interval k 2 �1; . . . ; K� defined on the interval s 2 �sk�1; sk�,
U�k�i , i
 1; . . . ; Nk, are the approximations of the control at the Nk
LGR points in mesh interval k 2 �1; . . . ; K�, Y�1�1 is the approx-

imation of y�s0 
�1�, and Y�K�NK�1 is the approximation of

y�sK 
�1�. Collocating the dynamics of Eq. (11) at the Nk LGR
points using Eq. (15), we have

XNk�1
j
1

D�k�ij Y
�k�
j �

tf � t0
2

a�Y�k�i ;U
�k�
i ; s

�k�
i ; t0; tf� 
 0

�i
 1; . . . ; Nk� (17)

where t�k�i are obtained from s�k�k using Eq. (5) and

D�k�ij 

�
d‘�k�j �s�

ds

�
s
�k�
i

; �i
 1; . . . ; Nk; j
 1; . . . ; Nk � 1

k
 1; . . . ; K� (18)

is the Nk � �Nk � 1� Radau pseudospectral differentiation matrix
[14] in mesh interval k 2 �1; . . . ; K�. Next, the path constraints of
Eq. (12) in mesh interval k 2 �1; . . . ; K� are enforced at the Nk LGR
points as

c min � c�Y�k�i ;U
�k�
i ; s

�k�
i ; t0; tf� � cmax; �i
 1; . . . ; Nk� (19)

Furthermore, the boundary conditions of Eq. (13) are approximated
as

b min � b�Y�1�1 ; t0;Y
�K�
NK�1; tf� � bmax (20)

It is noted that continuity in the state at the interior mesh points
k 2 �1; . . . ; K � 1� is enforced via the condition

Y �k�Nk�1 
 Y�k�1�1 ; �k
 1; . . . ; K � 1� (21)

where we note that the same variable is used for both Y�k�Nk�1 and

Y�k�1�1 . Hence, the constraint of Eq. (21) is eliminated from the
problem because it is taken into account explicitly. The NLP that
arises from the Radau pseudospectral approximation is then to
minimize the cost function of Eq. (16) subject to the algebraic
constraints of Eqs. (17–20).

Suppose now that we define the following quantities in mesh
intervals, k 2 �1; . . . ; K � 1�, and the final mesh interval, K:

s�k� 
 �s�k�i �1Nk ; k
 1; . . . ; K � 1; s�K� 
 �s�K�i �1NK�1
t�k� 
 �t�k�i �1Nk ; k
 1; . . . ; K � 1; t�K� 
 �t�K�i �1NK�1
Y�k� 
 �Y�k�i �1Nk ; k
 1; . . . ; K � 1; Y�K� 
 �Y�K�i �1NK�1
U�k� 
 �U�k�i �1Nk ; k
 1; . . . ; K

g�k� 
 �g�Y�k�i ;U
�k�
i ; s

�k�
i ; t0; tf��1Nk ; k
 1; . . . ; K

A�k� 
 �a�Y�k�i ;U
�k�
i ; s

�k�
i ; t0; tf��1Nk ; k
 1; . . . ; K

C�k� 
 �c�Y�k�i ;U
�k�
i ; s

�k�
i ; t0; tf��1Nk ; k
 1; . . . ; K

w�k� 
 �wi�1Nk ; k
 1; . . . ; K; N 

XK
k
1

Nk

We then define the following quantities:

s


s�1�

..

.

s�K�

2
664

3
775; t


t�1�

..

.

t�K�

2
664

3
775; w


w�1�

..

.

w�K�

2
664

3
775

Y 


Y�1�

..

.

Y�K�

2
664

3
775; U


U�1�

..

.

U�K�

2
664

3
775; g


g�1�

..

.

g�K�

2
664

3
775

A


A�1�

..

.

A�K�

2
664

3
775; C


C�1�

..

.

C�K�

2
664

3
775 (22)

It is noted for completeness that t 2 RN�1, s 2 RN�1,Y 2 R�N�1��ny ,
U 2 RN�nu , g 2 RN , A 2 RN�ny , and C 2 RN�nc . The cost function
and discretized dynamic constraints given in Eqs. (16) and (17) can
then be written compactly as

J  ��Y1; t0;YN�1; tf� �
tf � t0

2
wTg (23)

� 
DY �
tf � t0

2
A
 0 (24)

where � 2 RN�ny , and D is the composite Radau pseudospectral
differentiation matrix. A schematic of the composite Radau
differentiation matrix, D, is shown in Fig. 1, where it is seen that D
has a block structure with nonzero elements in the row-
column indices (

P
k�1
l
1 Nl � 1; . . . ;

P
k
l
1 Nl,

P
k�1
l
1 Nl � 1; . . . ;P

k
l
1 Nl � 1), where for every mesh interval k 2 �1; . . . ; K� the

nonzero elements are defined by the matrix given in Eq. (18). Next,
the discretized path constraints of Eq. (19) are expressed as

C min � C � Cmax (25)

where Cmin and Cmax are matrices of the same size as C and whose
rows contain the vectorscmin and cmax, respectively. Furthermore, the
discretized boundary conditions of Eq. (20) can be written as

b min � b�Y1; t0;YN�1; tf� � bmax (26)
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The NLP problem associated with the RPM is then to minimize the
cost function of Eq. (23) subject to the algebraic constraints of
Eqs. (24–26). Finally, let ��; 	� 2 RN�1 be defined as

�
 @t

@t0

 1 � s

2
; 	
 @t

@tf

 1� s

2
(27)

where the derivatives in Eq. (27) are obtained from Eq. (5).

V. Computation of Radau Pseudospectral
NLP Derivatives

The NLP problem arising from the RPM presented in section IV
has the following general form. Determine the vector of decision
variables z 2 RN�ny�nc��2 that minimizes the cost function

f�z� (28)

subject to the constraints

h min � h�z� � hmax (29)

In the case of the RPM, the decision vector, z, constraint function,
h�z�, and cost function, f�z�, are given, respectively, as

z 


Y:;1
..
.

Y:;ny
U:;1
..
.

U:;nu
t0
tf

2
6666666666664

3
7777777777775
; h


�:;1

..

.

�:;ny
C:;1
..
.

C:;nc
b1:nb

2
66666666664

3
77777777775
; f�z� 
 ��z� � 
�z�

(30)

where � is obtained directly from Eq. (23), and 
 is given as


 

tf � t0

2
wTg (31)

We now systematically determine expressions for the gradient of the
NLP objective function, the Jacobian of the NLP constraints, and the
Hessian of the NLP Lagrangian. The key result of this section is that
these NLP derivatives are obtained by differentiating the functions of
the continuous-time Bolza optimal control problem as defined in
Eqs. (1–4) as opposed to differentiating the functions of the NLP.

A. Gradient of Objective Function

The gradient of the objective function in Eq. (30) with respect to
the Radau pseudospectral NLP decision vector, z, is given as

rzf
rz��rz
 (32)

The derivative, rz�, is obtained as

rz�
 �rY� rU� rt0� rtf� � (33)

where

rY�
 rY:;1 � 	 	 	 rY:;ny
�

h i
rU�
 �01�Nnu � (34)

The derivatives, rY:;i �, rt0� and rtf�, are obtained as

rY:;i �

�

@�
@yi�t0� 01��N�1�

@�
@yi�tf�

�
; i
 1; . . . ; ny

rt0�

@�

@t0
; rtf �


@�

@tf
(35)

Next, rz
 is given as

rz
 
 rY
 rU
 rt0
 rtf 

� �

(36)

where

rY
 
 rY:;1
 	 	 	 rY:;ny



h i
rU
 
 rU:;1
 	 	 	 rU:;nu



h i

(37)

The derivatives, rY:;i 
, rU:;j 
, rt0
, and rtf 
, are obtained as

rY:;i 
 

�
tf�t0
2

�
w �

�
@g
@yi

�
1

N

�
T

0

�
; �i
 1; . . . ; ny�

rU:;j 
 

tf � t0

2

�
w �

�
@g

@uj

�
1

N

�
T

; �j
 1; . . . ; nu�

rt0
 
�
1

2
wTg�

tf � t0
2

wT

�
� �

�
@g

@t

�
1

N

�

rtf 
 

1

2
wTg�

tf � t0
2

wT

�
	 �

�
@g

@t

�
1

N

�
(38)

It is seen from Eqs. (32–38) that computing the objective function
gradient, rzf, requires that the first derivatives of g be determined
with respect to the continuous-time state, y, control, u, and time, t,
whereas the first derivatives of � be computed with respect to the
initial state, y�t0�, initial time, t0, final state, y�tf�, and final time, tf .
Furthermore, these derivatives are computed at either the N
collocation points (in the case of g and the derivatives of g) or are
computed at the endpoints (in the case of � and the derivatives of �).
The NLP objective function and gradient is then assembled using the
equations derived in this section.

B. Constraint Jacobian

The Jacobian of the constraints is defined as

rzh


rz�:;1

..

.

rz�:;ny
rzC:;1

..

.

rzC:;nc
rzb1
..
.

rzbnb

2
6666666666666664

3
7777777777777775

(39)

Block 1

Block 2

Block 3

Block K

(2)  Zeros Except in Blocks

(1)  Block k is of Size N k  by  N k+1

(3)  Total Size N by  N+1

Fig. 1 Structure of composite Radau pseudospectral differentiation
matrix where the mesh consists of K mesh intervals.
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The first derivatives of the defect constraints are obtained as

rz�:;l 
 rY�:;l rU�:;l rt0�:;l rtf�:;l
� �

l
 1; . . . ; ny (40)

where

rY�:;l 
 rY:;1�:;l 	 	 	 rY:;ny
�:;l

h i
rU�:;l 
 rU:;1�:;l 	 	 	 rU:;nu

�:;l
h i

l
 1; . . . ; ny (41)

The first derivatives, rY:;i�:;l, (i, l
 1; . . . ; ny), rU:;j�:;l,

(j
 1; . . . ; nu, l
 1; . . . ; ny), rt0�:;l, (l
 1; . . . ; ny), and
rtf�:;l, (l
 1; . . . ; ny), can be obtained as

rY:;i�:;l 

�
�ilD:;1:N �

tf�t0
2

diag

��
@al
@yi

�
1

N

	
�D:;N�1

�

rU:;j�:;l 
�
tf � t0

2
diag

��
@al
@uj

�
1

N

	

rt0�:;l 

1

2
�al�1N �

tf � t0
2

� �
�
@al
@t

�
1

N

rtf�:;l 
�
1

2
�al�1N �

tf � t0
2

	 �
�
@al
@t

�
1

N

(42)

where (i, l
 1; . . . ; ny), and (j
 1; . . . ; nu). Furthermore, �il is the
Kronecker delta function

�il 

�
1; i
 l
0; otherwise

The first derivatives of the path constraints are given as

rzC:;p 
 rYC:;p rUC:;p rt0C:;p rtfC:;p
� �

(43)

where

rYC:;p 
 rY:;1C:;p 	 	 	 rY:;ny
C:;p

h i
rUC:;p 
 rU:;1C:;p 	 	 	 rU:;nu

C:;p
h i

p
 1; . . . ; np (44)

The first derivatives, rY:;iC:;p, rU:;jC:;p, rt0C:;p, and rtfC:;p, can
be found in a sparse manner as

Fig. 2 General Jacobian sparsity pattern for RPM.
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rY:;iC:;p 

�
diag

��
@cp
@yi

�
1

N

� 0N�1

�

rU:;jC:;p 
 diag

��
@cp
@uj

�
1

N

	

rt0C:;p 
 � �
�
@cp
@t

�
1

N

rtfC:;p 
 	 �
�
@cp
@t

�
1

N

(45)

where (i
 1; . . . ; ny), (j
 1; . . . ; nu), and (p
 1; . . . ; nc). The first
derivatives of the boundary conditions are given as

rzbq 
 �rYbq rUbq rt0bq rtf bq �; q
 1; . . . ; nq (46)

where

rYbq 
 rY:;1bq 	 	 	 rY:;ny
bq

h i
rUbq 
 01�Nnu

� �
q
 1; . . . ; nq (47)

The first derivatives, rY:;i bq, rt0bq, and rtf bq, can be found in a

sparse manner as

rY:;i bq 

�

@bq
@yi�t0� 01�N�1

@bq
@yi�tf�

�

rt0bq 

@bq
@t0

; rtf bq 

@bq
@tf

(48)

where (i
 1; . . . ; ny), and (q
 1; . . . ; nb). It is seen from Eqs. (39–
48) that the NLP constraint Jacobian requires that the first derivatives
of f and c be determined with respect to the continuous-time state, y,
continuous-time control, u, and continuous-time, t, and that the
derivatives ofb be computedwith respect to the initial state, y�t0�, the
initial time, t0, the final state, y�tf�, and the final time, tf. Further-
more, these derivatives are computed at either the N collocation
points (in the case of the derivatives of f and c) or are computed at the
endpoints (in the case of b). The NLP constraint Jacobian is then
assembled using the equations derived in this section. The sparsity
pattern for a general Radau pseudospectral NLP constraint Jacobian
is shown in Fig. 2.

C. Lagrangian Hessian

The Lagrangian of the NLP given in Eqs. (28) and (29) is defined
as

L 
 �f�z� ��Th�z� (49)

where � 2 R, and � 2 RN�ny�nc��nb is a vector of Lagrange
multipliers. The vector � is given as

� 


�:;1
..
.

�:;ny
�:;1

..

.

�:;nc
�

2
66666666664

3
77777777775

(50)

where �i;j; �i
 1; . . . ; N; j
 1; . . . ; ny� are the Lagrange multi-
pliers associated with the defect constraints of Eq. (24), �i;j; �i

1; . . . ; N; i
 1; . . . ; nc� are the Lagrangemultipliers associated with
the path constraints of Eq. (25), and �i; �i
 1; . . . ; nb� are the
Lagrange multipliers associated with the boundary conditions of
Eq. (26). The Lagrangian can then be represented as

L 
 ��� �
 �
Xny
i
1

�T
:;i�:;i �

Xnc
p
1

�T
:;pC:;p �

Xnb
q
1

�qbq (51)

For convenience in the discussion that follows, the Hessian of the
Lagrangian will be decomposed into two parts as

r2
zzL
r2

zzLE �r2
zzLI (52)

where LE represents those parts of the Lagrangian that are functions
of the endpoints functions � and b,

L E 
 ���
Xnb
q
1

�qbq (53)

whereas LI represents those parts of the Lagrangian that are
functions of collocation point functions, 
,�, and C,

L I 
 �
 �
Xny
i
1

�T
:;i�:;i �

Xnc
p
1

�T
:;pC:;p (54)

In the next subsections, we describe the second derivatives of the
functions LE and LI. It is noted that the Hessian is symmetric; thus,
only the lower-triangular portion ofr2

zzLE andr2
zzLI are computed.

1. Hessian of Endpoint Function LE
The Hessian of LE with respect to the decision variable vector, z,

denoted r2
zzLE, is defined as

r2
zzLE


r2
YYLE �r2

UYLE�T �r2
t0Y

LE�T �r2
tfY

LE�T
r2

UYLE r2
UULE �r2

t0U
LE�T �r2

tfU
LE�T

r2
t0Y

LE r2
t0U

LE r2
t0t0

LE �r2
tf t0

LE�T
r2
tfY

LE r2
tfU

LE r2
tf t0

LE r2
tf tf

LE

2
6664

3
7775 (55)

where the blocks of r2
zzLE are defined as

r2
YYLE 


r2
Y:;1Y:;1

LE �r2
Y:;2Y:;1

LE�T 	 	 	 �r2
Y:;nyY:;1

LE�T

r2
Y:;2Y:;1

LE r2
Y:;2Y:;2

LE 	 	 	 �r2
Y:;nyY:;2

LE�T

..

. ..
. . .

. ..
.

r2
Y:;nyY:;1

LE r2
Y:;nyY:;2

LE 	 	 	 r2
Y:;nyY:;ny

LE

2
66666664

3
77777775

r2
UYLE 


r2
U:;1Y:;1

LE 	 	 	 r2
U:;1Y:;ny

LE

..

. . .
. ..

.

r2
U:;nuY:;1

LE 	 	 	 r2
U:;nuY:;ny

LE

2
66664

3
77775
 0Nnu��N�1�ny

r2
UULE 


r2
U:;1U:;1

LE �r2
U:;2U:;1

LE�T 	 	 	 �r2
U:;nuU:;1

LE�T

r2
U:;2U:;1

LE r2
U:;2U:;2

LE 	 	 	 �r2
U:;nuU:;2

LE�T

..

. ..
. . .

. ..
.

r2
U:;nuU:;1

LE r2
U:;nuU:;2

LE 	 	 	 r2
U:;nuU:;nu

LE

2
66666664

3
77777775


 0Nnu�Nnu

r2
t0Y

LE 
 r2
t0Y:;1

LE 	 	 	 r2
t0Y:;ny

LE
h i

r2
t0U

LE 
 r2
t0U:;1

LE 	 	 	 r2
t0U:;nu

LE
h i


 01�Nnu

r2
tfY

LE 
 r2
tfY:;1

LE 	 	 	 r2
tfY:;ny

LE
h i

r2
tfU

LE 
 r2
tfU:;1

LE 	 	 	 r2
tfU:;nu

LE
h i


 01�Nnu

The matrices,r2
Y:;iY:;j

LE,r2
t0Y:;j

LE,r2
t0t0LE,r2

tfY:;j
LE,r2

tft0LE, and
r2
tf tf

LE, are obtained in a sparse manner as
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r2
Y:;iY:;j

LE 


@2LE
@yi�t0�@yj�t0�

01�N�1
@2LE

@yi�t0�@yj�tf�
0N�1�1 0N�1�N�1 0N�1�1
@2LE

@yi�tf�@yj�t0�
01�N�1

@2LE
@yi�tf�@yj�tf�

2
64

3
75

�i
 1; . . . ; ny�; �j
 1; . . . ; i�

r2
t0Y:;j

LE 

�

@2LE
@t0@yj�t0� 01�N�1

@2LE
@t0@yj�tf�

�
; �j
 1; . . . ; ny�

r2
t0t0

LE 

@2LE
@t20

; r2
tfY:;j

LE 

�

@2LE
@tf@yj�t0� 01�N�1

@2LE
@tf@yj�tf�

�

�j
 1; . . . ; ny�; r2
tf t0

LE 

@2LE
@tf@t0

; r2
tf tf

LE 

@2LE
@t2f

(56)

where we recall that LE is itself a function of the Mayer cost, �, and
the boundary condition function,b. Because � andb are functions of
the continuous-time Bolza optimal control problem, the Hessian,
r2

zzLE, with respect to the NLP decision vector, z, can itself be
obtained by differentiating the functions of the continuous-time
optimal control problem and assembling these derivatives into the
correct locations of the NLP Lagrangian Hessian.

2. Hessian of Collocation Point Function LI
The Hessian r2

zzLI is defined as

r2
zzLI 


r2
YYLI �r2

UYLI�T �r2
t0Y

LI�T �r2
tfY

LI�T
r2

UYLI r2
UULI �r2

t0U
LI�T �r2

tfU
LI�T

r2
t0Y

LI r2
t0U

LI r2
t0t0

LI �r2
tf t0

LI�T
r2
tfY

LI r2
tfU

LI r2
tf t0

LI r2
tf tf

LI

2
6664

3
7775 (57)

where the blocks of r2
zzLI are given as

r2
YYLI 


r2
Y:;1Y:;1

LI �r2
Y:;2Y:;1

LI�T 	 	 	 �r2
Y:;nyY:;1

LI�T

r2
Y:;2Y:;1

LI r2
Y:;2Y:;2

LI 	 	 	 �r2
Y:;nyY:;2

LI�T

..

. ..
. . .

. ..
.

r2
Y:;nyY:;1

LI r2
Y:;nyY:;2

LI 	 	 	 r2
Y:;nyY:;ny

LI

2
66666664

3
77777775

r2
UYLI 


r2
U:;1Y:;1

LI 	 	 	 r2
U:;1Y:;ny

LI

..

. . .
. ..

.

r2
U:;nuY:;1

LI 	 	 	 r2
U:;nuY:;ny

LI

2
66664

3
77775

r2
UULI 


r2
U:;1U:;1

LI �r2
U:;2U:;1

LI�T 	 	 	 �r2
U:;nuU:;1

LI�T

r2
U:;2U:;1

LI r2
U:;2U:;2

LI 	 	 	 �r2
U:;nuU:;2

LI�T

..

. ..
. . .

. ..
.

r2
U:;nuU:;1

LI r2
U:;nuU:;2

LI 	 	 	 r2
U:;nuU:;nu

LI

2
66666664

3
77777775

r2
t0Y

LI 
 r2
t0Y:;1

LI 	 	 	 r2
t0Y:;ny

LI
h i

r2
t0U

LI 
 r2
t0U:;1

LI 	 	 	 r2
t0U:;nu

LI
h i

r2
tfY

LI 
 r2
tfY:;1

LI 	 	 	 r2
tfY:;ny

LI
h i

r2
tfU

LI 
 r2
tfU:;1

LI 	 	 	 r2
tfU:;nu

LI
h i

The matrices, r2
Y:;iY:;j

LI,r2
U:;iY:;j

LI ,r2
U:;iU:;j

LI ,r2
t0Y:;j

LI ,r2
t0U:;j

LI ,
r2
t0t0LI , r2

tfY:;j
LI , r2

tfU:;j
LI , r2

tf t0LI , and r2
tftfLI , are obtained in a

sparse manner as

r2
Y:;iY:;j

LI 

diag�� @2LI

@yi@yj
�1N� 0N�1

01�N 0

" #

�i
 1; . . . ; ny; j
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�
1

N

�
T
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 1; . . . ; ny�;r2
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LI 

��
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�
1

N

�
T
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LI 
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LI 

���
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�
1

N

�
T

0

�
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 1; . . . ; ny�
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LI 

��
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@tf@uj

�
1

N

�
T
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 1; . . . ; nu�
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tf t0

LI 

@2LI
@tf@t0

; r2
tf tf

LI 

@2LI
@t2f

(58)

It is seen that the derivatives given in Eq. (58) are functions of the
derivatives of LI with respect to the components of the continuous-
time state, y�t�, the components of the continuous-time control,u�t�,
the initial time, t0, and the final time, tf . The derivatives, � @2LI

@yi@yj
�1N ,

� @2LI
@ui@yj
�1N , � @

2LI
@ui@uj
�1N , � @

2LI
@t0@yj
�1N , � @

2LI
@t0@uj
�1N , @

2LI
@t2

0

, � @2LI
@tf@yj
�1N , � @

2LI
@tf@uj
�1N , @2LI

@tf@t0
, and

@2LI
@t2
f

, are given, respectively, as
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�
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It is seen from the preceding derivation that the Hessian of LI , with
respect to the NLP decision vector z, is a function of the first and
second derivatives of the functions g and a, and the second
derivatives of the function c, where g, a, and c are defined in
section III. Thus, the Hessian of LI can be obtained as a function of
derivatives associatedwith the functions of the Bolza optimal control

problem as stated in the section III. Figure 3 shows the sparsity
pattern of a general NLP Lagrangian Hessian obtained from the
discretization of the continuous-time Bolza problem using the RPM.

VI. Discussion

Although perhaps not evident at first glance, the approach of
section V only requires differentiation of the much smaller and
simpler functions of the continuous-time Bolza optimal control
problem of section III, as opposed to differentiation of the much
larger andmore complicated objective and constraint functions of the
NLP. For example, using our approach, the NLP constraint Jacobian
of section V.B is obtained using Eqs. (42), (45), and (48), where the
first derivatives of the defect constraints and path constraints are
evaluated at the N collocation points, whereas the derivatives of the
boundary condition function are evaluated at the endpoints of
the interval. Thus, the Jacobian is obtained by evaluating only the
functions of the continuous-time Bolza optimal control problem, as
opposed to differentiating the much larger and more complicated
objective and constraint functions of the NLP. The simplicity of the
approach developed in this paper over differentiating the NLP is
particularly evident when computing the Lagrangian Hessian of
section V.C. Specifically, from Eqs. (56) and (58), it is seen that the
Hessian is obtained by differentiating the functions,LI andLE, with
respect to the continuous-time state, control, and time at either the
endpoints (in the case LE) or the N collocation points (in the case of
LI). Furthermore, becauseLE andLI are scalar functions, a variety of
differentiation techniques can be used in an efficient and easy-to-
understandmanner. Effectively, the NLP objective function gradient,
constraint Jacobian, and Lagrangian Hessian are obtained by
differentiating a subset of simpler and smaller functions. Because the
derivatives of these simpler and smaller functions are evaluated at
only the collocation points or the endpoints of the time interval, the
expressions derived in section V provide the most efficient way to
compute the NLP derivative functions.

VII. Example

Consider the following variation of the orbit-raising optimal
control problem taken from Bryson and Ho [33]. Minimize the cost
functional

J
�r�tf� (69)

subject to the dynamic constraints

_r
 vr; _�
 v�=r _vr 
 v2�=r � �=r2 � au1
_v� 
�vrv�=r� au2 (70)

the equality path constraint

c
 u21 � u22 
 1 (71)

and the boundary conditions
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 ��0� 
 0
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 vr�0� 
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 v��0� � 1
 0
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 vr�tf� 
 0; b6 


















�=r�tf�

q
� v��tf� 
 0 (72)

where �
 1, T 
 0:1405, m0 
 1, _m
 0:0749, tf 
 3:32, and

� a�t� 
 T

m0 � j _mjt
(73)

In this example, the continuous-time state and control are given,
respectively, as

y �t� 
 � r�t� ��t� vt�t� v��t� �; u�t� 
 �u1�t� u2�t� �

whereas the right-hand side function of the dynamics, the path
constraint function, and the boundary condition function are given,
respectively, as
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Finally, the lower and upper bounds on the path constraints and
boundary conditions are all zero. Because the first five boundary
conditions, (b1; . . . ; b5), are simple bounds on the initial and final
continuous-time state, they will be enforced in the NLP as simple
bounds on the NLP variables corresponding to the initial and
terminal state. The sixth boundary condition, b6, on the other hand, is
a nonlinear function of the terminal state and, thus, will be enforced
in the NLP as a nonlinear constraint.

The NLP arising from the Radau pseudospectral discretization of
the optimal control problem given in Eqs. (69–72) was solved using
NLP solver IPOPT [29]. It is noted that IPOPT can be used as either a
first-derivative NLP solver (where the objective function gradient
and constraint Jacobian are supplied) or can be used as a second-
derivative NLP solver (where the objective function gradient,
constraint Jacobian, and Lagrangian Hessian are supplied). When
used as a first-derivative, quasi-Newton NLP solver, IPOPT
approximates the Lagrangian Hessian using a limited-memory
BFGS update. When used as a second-derivative NLP solver, the
lower-triangular portion of the sparse Lagrangian Hessian is used. It
is noted that the computational efficiency and reliability of IPOPTare
enhanced by providing an accurate, sparse, and efficiently-computed
Lagrangian Hessian.

To see the effectiveness of the derivation presented in section V, in
this example theRadau pseudospectralNLPwas solvedusing IPOPT

by either directly differentiating the NLP objective function, f, the
constraints, h, and the Lagrangian, L, or by differentiating the
functions, �, g, a, c, and b, of the continuous-time Bolza optimal
control problem as given in Eqs. (1–4), respectively, and using the
method derived in section V. When the NLP functions are directly
differentiated and IPOPT is applied as a first-derivative NLP, the first
derivatives of f and h are computed using either1) first forward-
differencing or 2) the forward-mode object-oriented MATLAB
automatic differentiator INTLAB [34]. When the NLP functions are
directly differentiated and IPOPT is applied as a second-derivative
NLP solver, the first derivatives of f andh and the second derivatives
of L are computed using either 3) method 1 plus a second forward-
difference to approximate the Hessian of L or 4) method 2 plus the
forward-mode, object-oriented MATLAB automatic differentiator
INTLAB [34] to compute the Hessian ofL. When the Bolza optimal
control functions �, g, a, c, and b are differentiated and IPOPT is
used as a first-derivative NLP solver, the first derivatives of �, g, a, c,
and b are computed using either 5) first forward-differencing of �, g,
a, c, andb or 6) analytic differentiation of �, g, a, c, andb.When the
Bolza optimal control functions �, g, a, c, and b are differentiated
and IPOPT is used as a second-derivative NLP solver, the first and
second derivatives of �, g, a, c, and b are computed using either
7) the method of 5 plus second forward-differencing to approximate
the second derivatives of �, g, a, c, and b; or 8) analytic
differentiation to obtain the second derivatives of �, g, a, c, and b.

Table 1 summarizes the different derivative methods 1–8 and the
usages of IPOPT for this example, whereas the Jacobian and Hessian
sparsity patterns for this example are shown, respectively, in Figs. 4
and 5.When using finite differencing or INTLAB to differentiate the
NLP constraint function, only the nonlinear partswere differentiated;
all known linear parts of the NLP constraint function were obtained a
priori and stored for later use. When implementing the mapping
derived in section V, only the functions of the continuous-time Bolza

Fig. 3 General Hessian sparsity pattern for RPM.
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Table 1 Summary of different derivative methods used to solve example with the NLP solver IPOPT

Method used IPOPT mode Functions being differentiated Derivative approximation method

1 First derivative NLP functions f and h Finite differencing
2 First derivative NLP functions f and h Automatic differentiation
3 Second derivative NLP functions f and h Finite differencing
4 Second derivative NLP functions f and h Automatic differentiation
5 First derivative Optimal control functions �, g, a, c, and b Finite differencing
6 First derivative Optimal control functions �, g, a, c, and b Analytic derivatives
7 Second derivative Optimal control functions �, g, a, c, and b Finite differencing
8 Second derivative Optimal control functions �, g, a, c, and b Analytic derivatives

Fig. 4 NLP constraint Jacobian sparsity pattern for example problem.

Fig. 5 NLP Lagrangian Hessian sparsity pattern for example problem.
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problem shown in section III are computed; the appropriate NLP
derivative matrices are then obtained by inserting these derivatives
into the correct locations in the appropriate matrix using themapping
of section V. It is noted that the NLP constraint Jacobian and
Lagrangian Hessian sparsity patterns, shown in Figures 4 and 5, are
found using the derivation given in section V by differentiating the
continuous-time Bolza optimal control problem and are imple-
mented for all derivative methods. All computations were performed
on an Intel Core 2 Duo 660 2.4 GHz computer with 2 GB of RAM
running 32-bit OpenSuse Linux with MATLAB 2010a and IPOPT
version 3.6, where IPOPTwas compiled with the sparse symmetric
linear solver MA57 [35]. Finally, for each of the methods 1–8, the
values in the NLP derivatives matrices were verified using both 1)
the derivative checker built into IPOPTand 2) a comparison between
the derivatives obtained using the method of section V and the
derivatives obtained using the automatic differentiator INTLAB
[34].

The example was solved using K 
 �16; 32; 64; 128; 256; 512�
equally-spaced mesh intervals with four LGR points in each mesh
interval. A typical solution to obtained for this example is shown in
Fig. 6. Tables 2 and 3 summarize the computational performance
using methods 1–4 and methods 5–8, respectively. In particular,
Tables 2 and 3 show that differentiating the functions of the Bolza
optimal control problem and using the approach of section V is
significantly more computationally efficient than direct differ-
entiation of the NLP functions. More specifically, it is seen in
Tables 2 and 3 that, regardless of whether the NLP solver is used as a
quasi-Newton or Newton method, the difference in computational
efficiency between direct NLP function differentiation and the
approach of this paper grows to several orders of magnitude. As an
example, for N 
 2048 method 1 takes 2246 s, although method 5
takes 27.1 s, whereasmethod 3 takes 5871 s, althoughmethod 7 takes
23.1 s. As a result, differentiating only the functions of the optimal
control problem has a substantial computational benefit for large
problems over direct differentiation of the NLP functions.

Next, it is useful to compare finite differencing against either
automatic or analytic differentiation. First, when comparingmethods
1 and 2 to methods 3 and 4 in Table 2 (that is, comparing finite
differencing against automatic differentiation of the NLP functions),
it is seen that using IPOPT with as a quasi-Newton method with
INTLAB is significantly more efficient than using any other method
where the NLP functions are differentiated directly. Correspond-
ingly, direct differentiation of the NLP functions using IPOPT in

a) State vs. time

b) Control vs. time
Fig. 6 Solution to orbit-raising optimal control problem for 16 equally-

spaced sections of four LGR points each (N � 64).

Table 2 Direct differentiation of the NLP functions using finite differencing and INTLAB for the

example problem using the Radau pseudospectral method with K � �16; 32; 64; 128; 256; 512�
equally-spaced mesh intervals, Nk � 4 LGR points per mesh interval, and the NLP solver IPOPT

Derivative method for IPOPT K N NLP major iterations CPU time (s)

Method 1: First NLP
derivatives using finite differencing

16 64 141 36.2
32 128 121 57.9
64 256 125 133

128 512 176 435
256 1024 212 1051
512 2048 196 2246

Method 2: First NLP
derivatives using INTLAB

16 64 118 2.9
32 128 115 3.6
64 256 136 5.7

128 512 156 10.2
256 1024 158 19.4
512 2048 143 31.2

Method 3: First and second NLP
derivatives using finite differencing

16 64 32 44.5
32 128 35 100
64 256 46 263

128 512 49 708
256 1024 56 2058
512 2048 67 5871

Method 4: First and second NLP
derivatives using INTLAB

16 64 33 2.3
32 128 39 5.4
64 256 43 17.1

128 512 77 126
256 1024 Out of memory Out of memory
512 2048 Out of memory Out of memory
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second-derivative mode is by far the least efficient because it is
computationally costly to compute the Hessian Lagrangian in this
manner. In addition to computational cost, INTLAB suffers from the
problem that MATLAB runs out of memory for N 
 1024 or
N 
 2048. Thus, even though IPOPT converges in many fewer
iterations in second-derivativemode, the cost per iteration required to
compute the Lagrangian Hessian is significantly higher than the cost
to use the quasi-Newton Hessian approximation.

Next, Table 4 summarizes the problem size and density of theNLP
constraint Jacobian and Lagrangian Hessian for the different values
of K. It is interesting to observe that the densities of both the NLP
constraint Jacobian and Lagrangian Hessian decrease quickly as a
function of the overall problem size (number of variables and
constraints). Because the number of nonzeros in the Jacobian and
Hessian matrices grows slowly as a function ofK, one would expect
that the execution time would also grow slowly. As seen from the
results in Table 3, the approach developed in section Vof this paper
exploits the slow growth in the number of nonzeros, thusmaintaining
computational tractability as the NLP increases in size. Table 2, on
the other hand, shows that, when the NLP functions are directly
differentiated, many unnecessary calculations are performed that
degrade performance to the point where direct differentiation
becomes intractable for large values of K.

The results obtained by differentiating the optimal control
functions using the derivation of section Vare significantly different
from those obtained using direct differentiation of theNLP functions.
In particular, it is seen that using either finite differencing or analytic
differentiation, the computation times using the method of section V
are much lower than those obtained by direct differentiation of the

NLP functions. In addition, the benefit of using second analytic
derivatives (a reduction in computation time by a factor of 2 over
second-finite differencing) demonstrates that, with an accurate
Hessian, only a small fraction of the total execution time is spent
inside the NLP solver. Instead, the majority of the execution time is
spent evaluating the Hessian. As a result, the speed with which
IPOPT can generate a solution in second-derivative mode depends
heavily upon the efficiency with which the Lagrangian Hessian can
be computed. Referring again to Table 4, it is seen that the method of
this paper takes advantage of the sparsity in the NLP constraint
Jacobian and Lagrangian Hessian as K increases. Because the
method presented in this paper has the benefit that an accurate
Hessian can be computed quickly, the time required to solve the NLP
is greatly reduced over direct differentiation of the NLP functions.

VIII. Conclusions

Explicit expressions have been derived for the objective function
gradient, constraint Jacobian, and Lagrangian Hessian of a nonlinear
programming problem that arises in direct collocation pseudospec-
tral methods for solving continuous-time optimal control problems.
A key feature of the procedure developed in this paper is that only the
functions of the continuous-time optimal control problem need to be
differentiated in order to determine the nonlinear programming
problem derivative functions. As a result, it is possible to obtain these
derivative functions much more efficiently than would be the case if
the nonlinear programming problem functions were directly differ-
entiated. In addition, the approach derived in this paper explicitly
identifies the sparse structure of the nonlinear programming

Table 3 Differentiation of the Bolza optimal control problem functions together with the approach of

section V using finite differencing and analytic differentiation for the example problem using the

Radau pseudospectral method with K � �16; 32; 64; 128; 256; 512� equally-spaced mesh intervals,
Nk � 4 LGR points in each mesh interval, and the NLP solver IPOPT

Derivative method for IPOPT K N NLP major iterations CPU time (s)

Method 5: First optimal control problem
derivatives using finite differencing

16 64 144 1.7
32 128 114 1.9
64 256 132 3.5
128 512 157 7.6
256 1024 152 13.7
512 2048 164 27.1

Method 6: First optimal control problem
analytic derivatives

16 64 113 1.3
32 128 106 1.7
64 256 132 3.2
128 512 154 6.8
256 1024 150 12.1
512 2048 136 21.1

Method 7: First and second optimal control
problem derivatives using finite differencing

16 64 31 0.83
32 128 35 1.3
64 256 45 2.5
128 512 48 4.9
256 1024 56 11.0
512 2048 60 23.1

Method 8: First and second optimal control
problem analytic derivatives

16 64 30 0.54
32 128 35 0.93
64 256 41 1.6
128 512 42 2.5
256 1024 49 5.3
512 2048 60 10.9

Table 4 Summary of problem sizes and densities of NLP constraint Jacobian andLagrangianHessian for the example problem

using the Radau pseudospectral method with K � �16; 32; 64; 128; 256; 512� equally-spaced mesh intervals,
Nk � 4 LGR points in each mesh interval, and the NLP solver IPOPT

K N NLP variables NLP constraints Jacobian nonzeros Jacobian density (%) Hessian nonzeros Hessian density (%)

16 64 390 321 2498 2.00 1925 1.27
32 128 774 641 4994 1.01 3845 0.642
64 256 1542 1281 9986 0.506 7685 0.323
128 512 3078 2561 19970 0.253 15365 0.162
256 1024 6150 5121 39938 0.127 30725 0.0812
512 2048 12294 10241 79874 0.0634 61445 0.0407
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problem. The approach developed in this paper can significantly
improve the computational efficiency and reliability of solving the
nonlinear programming problem arising from the pseudospectral
approximation, particularly when using a second-derivative non-
linear programming problem solver where the Lagrangian Hessian
can be exploited. An example has been studied to show the efficiency
of various derivative options, and the approach developed in this
paper is found to improve significantly the efficiency with which the
nonlinear programming problem is solved.
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