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Abstract

The problem of minimum-fuel finite-thrust low-Earth orbit small spacecraft heating rate-

constrained aeroassisted orbital transfer with an inclination change is considered. The trajec-

tory design is described in detail and the aeroassisted orbital transfer is posed as a nonlinear

optimal control problem. The optimal control problem is solved using an established open-

source optimal control software. It is found for heating rate-unconstrained cases that the fuel

consumption is insensitive to the number of atmospheric passes, whereas for heating rate-

constrained cases the fuel consumption decreases as a function of the number of atmospheric

passes. The key features of the optimal trajectories are identified. The results of this re-

search demonstrate the efficiency of the aeroassisted orbital transfer when compared with a

finite-thrust all-propulsive transfer.

Nomenclature

a = Semi-Major Axis (m)
CD = Coefficient of Drag (no units)
CD0 = Zero-Lift Coefficient of Drag (no units)
CL = Coefficient of Lift (no units)
C̄L = Maximum Allowable Lift Coefficient (no units)
e = Eccentricity (no units)
g = Magnitude of Gravitational Acceleration (m · s−2)
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g0 = Standard Acceleration Due to Gravity (m · s−2)
G = Standard Gravity-Normalized Specific Force (no units)
Ḡ = Maximum Standard Gravity-Normalized Specific Force (no units)
h = Altitude Over Spherical Earth (m or km)
hatm = Altitude at Edge of Sensable Atmosphere (m or km)
i = Inclination (rad or deg)
if = Inclination at Terminal Orbit (rad or deg)
Isp = Specific Propulsion (s)
K = Drag Polar Constant (no units)
m = Mass of Small Spacecraft (kg)
n = Number of Atmospheric Passes (no units)
q = Dynamic Pressure (N · m−2)

Q̇ = Stagnation Point Heating Rate (W · cm−2)

Q̇max = Maximum Stagnation Point Heating Rate (W · cm−2)

Q̇f = Stagnation Point Heating Rate Multiplier (W · cm−2)
r = Geocentric Radius (m)
S = Vehicle Reference Area (m2)
t = Time (s)
tatm = Total Duration of Atmospheric Flight (s)
T = Thrust Magnitude (N)
(u1, u2, u3) = Components of Thrust Direction (no units)
v = Speed (m · s−1 or km · s−1)
(w1, w2) = Components of Lift Vector (no units)
vc = Earth Radius Circular Speed of Spacecraft (m · s−1)
Re = Radius of Earth (m)
α = Angle of Attack (deg or rad)
αmax = Maximum Allowable Angle of Attack (deg or rad)
β = Inverse of Density Scale Height (m−1)
γ = Flight Path Angle (deg or rad)
∆vatm = Change in Speed During Atmospheric Flight Phase (m · s−1 or km · s−1)
∆tatm = Duration of Atmospheric Flight Phase (s)
∆tprop = Duration of Thrust Phase (s)
θ = Longitude (rad)
µ = Gravitational Parameter (m3 · s−2)
ν = True Anomaly (rad)
ρ = Atmospheric Density (kg · m−3)
ρ0 = Atmospheric Density at Sea Level (kg · m−3)
Ω = Longitude of Ascending Node (rad)
ω = Argument of Perigee (rad)
σ = Bank Angle (deg or rad)
ψ = Heading Angle (rad)
φ = Geocentric Latitude (rad)
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1 Introduction

It is well known that using aerodynamic force to transfer a spacecraft between two orbits can po-

tentially reduce propellant consumption when compared with performing the orbital transfer using

purely propulsive maneuvers. The use of aerodynamic force to perform an orbital transfer is gener-

ically called an aeroassisted orbital transfer, and the concept of an aeroassisted orbital transfer

originates with the work of Ref. 1. Aeroassisted orbital transfer maneuvers fall into the follow-

ing categories: aerobrake, aerocapture, aeroglide, aerocruise, and aerogravity assist. An aerobrake

is a purely aerodynamic maneuver where the atmosphere is used to reduce the size of the orbit.

An aerocapture is an atmospheric maneuver that depletes a sufficient amount of energy to change

the orbit from hyperbolic to elliptic relative to the centrally attracting body. An aeroglide typ-

ically combines unpowered atmospheric flight with powered exo-atmospheric flight to change the

size, shape, and orientation of the orbit. An aerocruise is a maneuver that combines the use of

atmospheric force with thrusting in the atmosphere. Finally, an aerogravity assist combines the

atmosphere with propulsion and gravity to modify a hyperbolic orbit (that is, an aerogravity assist

is an aerodynamically assisted planet swing-by).

Early work on aeroassisted orbital transfer for large spacecraft is summarized in the survey

papers of Refs. 2 and 3. Since that time, a great deal more work has been done on the problem

of aeroassisted orbital transfer and guidance for large spacecraft.4–17 Ref. 4 considers the problem

of minimum energy loss while completing an aeroassisted plane change. Refs. 5 and 6 consider the

problem of high-Earth orbit to low-Earth orbit impulsive single-pass lift-modulated aeroassisted

orbital transfer. Ref. 7 develops a neighboring optimal guidance law that controls fuel consumption

in an aeroassisted orbital transfer vehicle. Ref. 8 considers the problem of optimal heating rate-

constrained solutions using an aeroassisted orbital transfer. Ref. 9 studies the problem of optimal

skip trajectories using the atmosphere. Ref. 10 performs a numerical optimization study using direct

collocation for the problem of low-Earth orbit aeroassisted orbital transfer with plane change in the
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presence of heating rate and heat load constraints. Ref. 11 performs a numerical optimization study

of coplanar aeroassisted orbital transfer, while Ref. 12 considers the problem of aeroassisted orbital

transfer with limits on thrust. Ref. 13 considers the problem of geostationary to low-Earth orbit

transfer using aerogliding maneuvers and multiple passes through the atmosphere in the presence of

constraints on heating rate. Ref. 14 considers coplanar and non-coplanar trajectory transfers using

solar electric propulsion and aeroassisted maneuvers. Ref. 15 considers the problem of developing

a fast method that can be used in multi-disciplinary design optimization of aeroassisted orbital

transfer. Ref. 16 studies the sensitivity of minimum-fuel aeroassisted orbital transfer to thermal

protection system mass, while Ref. 17 develops a multi-disciplinary design optimization method for

use in preliminary design of aeroassisted orbital transfer.

While earlier work focused on orbital transfer of large spacecraft, in recent the use of small space-

craft has been recognized as a technology that than greatly increase the operational responsiveness

of space.18,19 One way in which operational responsiveness can be improved is for small spacecraft

to have the ability to perform crossrange maneuvers using aerodynamic force, that is, it is useful

for a small spacecraft to have the ability to perform an aeroassisted orbital transfer. The use of

atmospheric force can potentially enhance an on-orbit maneuver (for example, inclination change)

while simultaneously lowering fuel consumption, thereby reducing the overall cost of a mission as

compared to using an all-propulsive orbital transfer. While the aforementioned research shows that

large spacecraft aeroassisted orbital transfer has received a great deal of attention, significantly

less attention has been paid to the problem of small spacecraft aeroassisted orbital transfer. One

particular study of small spacecraft aeroassisted orbital transfer is the work of Ref. 20. Specifically,

Ref. 20 considers the problem of minimum-fuel heating rate-constrained aeroassisted orbital transfer

under the assumption of impulsive thrust. Because propulsion system limitations on board a small

spacecraft make the assumption of impulsive thrust unrealistic, in this research we consider the

problem of moderate finite-thrust aeroassisted orbital transfer of a small spacecraft with a mass of

approximately 1000 kg (see Refs. 20–23).
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The objective of this paper is to gain a better understanding of the performance requirements

and the structure of minimum-fuel trajectories for transferring a small spacecraft with moderate

thrust capability between two low-Earth orbits with a constraint on heating rate and a change in

inclination. The optimal aeroassisted orbital transfer problem is posed as a nonlinear multiple-phase

optimal control problem, and the optimal control problem is solved via direct collocation using the

Radau collocation hp–adaptive24 version of the open-source optimal control software GPOPS.25–27

The overall performance of the vehicle is analyzed as a function of the number of atmospheric

passes, required inclination change, and maximum allowable heating rate. The results obtained in

this study are also compared against a finite-thrust all-propulsive orbital transfer. Finally, the key

features of the structure of the optimal trajectories are described in detail.

This paper is organized as follows. In Section 2 we state the equations of motion and physical

model for the vehicle under consideration in this study. In Section 3 we provide a detailed description

of the problem formulation. In Section 4 we describe the results of the numerical optimization study.

Finally, in Section 5 we provide conclusions on our work.

2 Equations of Motion and Vehicle Model

Consider the motion of a vehicle modeled as a point mass over a spherical non-rotating Earth.

The vehicle can be in either unpowered exo-atmospheric flight, powered exo-atmospheric flight or

unpowered atmospheric flight. During unpowered or powered exo-atmospheric flight, the differential

equations of motion are given as28

ṙ = v sin γ, θ̇ =
v cos γ cosψ

r cosφ
, φ̇ =

v cos γ sinψ

r
, v̇ =

Tu1
m

− g sin γ,

γ̇ =
Tu2
mv

−
(g

v
−
v

r

)

cos γ, ψ̇ =
Tu3

mv cos γ
−
v

r
cos γ cosψ tanφ, ṁ =

−T

g0Isp
,

(1)

where g = µ/r2. It is noted that during unpowered exo-atmospheric flight neither T nor (u1, u2, u3)

are included in the dynamics of Eq. (1). The equations of motion for the vehicle during unpowered
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atmospheric flight are given as28

ṙ = v sin γ, θ̇ =
v cos γ cosψ

r cosφ
, φ̇ =

v cos γ sinψ

r
, v̇ = −

qSCD

m
− g sin γ,

γ̇ = −
qS

mv
w1 −

(g

v
−
v

r

)

cos γ, ψ̇ = −
qS

mv cos γ
w2 −

v

r
cos γ cosψ tanφ,

(2)

where q = ρv2/2 is the dynamic pressure, ρ = ρ0 exp(−βh), CD = CD0+KC
2
L, and CL =

√

w2
1 + w2

2.

Table 2 provides the physical constants and vehicle data used in this research, where the vehicle

data in Table 2 represents a high lift-to-drag ratio moderate-thrust vehicle with aerodynamic char-

acteristics similar to those found in Refs. 20 and 29.

3 Problem Formulation

In this section we formulate the problem of transferring a small spacecraft, whose model is given

in Section 2, between two circular low-Earth orbits of the same size but with different inclination.

During atmospheric flight it is assumed that the heating rate is constrained. The goal is to transfer

the spacecraft from the initial orbit to the terminal orbit while minimizing the fuel consumption.

In Section 3.1 we formulate the trajectory event sequence. In Section 3.2 we provide the initial

and terminal conditions. In Section 3.3 we develop the interior point constraints. In Section 3.4

we formulate the path constraints during flight. In Section 3.5 we develop the objective functional

that is to be minimized. Finally, in Section 3.6 we state formally the multiple-phase optimal control

problem that corresponds to the trajectory event sequence defined in Section 3.1.

3.1 Trajectory Event Sequence

The trajectory event sequence for an n–pass transfer is given as follows. The orbital transfer starts

with the following phase:

(i) a constant thrust powered exo-atmospheric flight phase that starts on the initial orbit and

terminates at the altitude of the edge of the sensable atmosphere, hatm.

6



The following three phases and events are then repeated n− 1 times:

(ii) an atmospheric flight phase that starts and terminates at the altitude hatm;

(iii) an unpowered exo-atmospheric flight phase that starts at the edge of the sensable atmosphere;

(iv) a constant thrust powered exo-atmospheric flight phase that terminates at the altitude hatm.

Finally, the trajectory event sequence terminates with the following three phases:

(v) an atmospheric flight phase that starts and terminates at the altitude hatm;

(vi) an unpowered exo-atmospheric flight phase that starts at the altitude hatm and terminates at

or prior to the terminal orbit;

(vii) a constant thrust powered exo-atmospheric flight phase that terminates at the terminal orbit.

A schematic of the trajectory event sequence is shown in Fig. 1.

3.2 Initial and Terminal Conditions

The initial conditions correspond to those of an equatorial circular orbit of altitude h0. This initial

orbit is given in terms of orbital elements as

a(t0) = Re + h0, e(t0) = 0, i(t0) = 0,

Ω(t0) = 0, ω(t0) = 0, ν(t0) = 0,
(3)

where the values for Ω(t0), ω(t0), and ν(t0) are arbitrarily set to zero. The terminal conditions

correspond to a circular orbit of altitude hf and are given as

a(tf ) = Re + hf , e(tf ) = 0, i(tf ) = if , (4)

where if is the prescribed inclination of the terminal orbit. Because the terminal orbit is circular

and no constraints are placed on the location of the spacecraft in the terminal orbit, the values

Ω(tf ) and ω(tf ) are undefined while the value ν(tf ) is free.
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3.3 Interior-Point Constraints

The following interior point constraints are imposed during the orbital transfer. First, at all phase

boundaries it is assumed that the time, state, and mass are continuous, that is,

t−f = t+0 , r(t−f ) = r(t+0 ), θ(t−f ) = θ(t+0 ), φ(t−f ) = φ(t+0 ),

v(t−f ) = v(t+0 ), γ(t−f ) = γ(t+0 ), ψ(t−f ) = ψ(t+0 ), m(t−f ) = m(t+0 ),
(5)

where t−f and t+0 correspond to the final time of a phase and the initial time of the ensuing phase.

Next, in order to ensure that the vehicle is descending upon atmospheric entry, the following con-

straints are imposed at each atmospheric entry:

r (tatm0 ) = hatm +Re, γ (tatm0 ) ≤ 0, (6)

where tatm0 is the time at the start of any atmospheric flight segment. Next, in order to ensure

that the vehicle is ascending upon atmospheric exit, the following constraints are imposed at each

atmospheric exit:

r
(

tatmf

)

= hatm +Re, γ
(

tatmf

)

≥ 0, (7)

where tatmf is the time at the terminus of any atmospheric flight segment.

3.4 Path Constraints

The following constraint is imposed during atmospheric flight in order to ensure that the vehicle

does not exit the atmosphere:

0 ≤ h ≤ hatm, (8)

where hatm is the altitude corresponding to the edge of the sensable atmosphere. Furthermore, it is

assumed during atmospheric flight that the coefficient of lift is constrained as

0 ≤ w2
1 + w2

2 ≤ C̄2
L. (9)
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Next, it is assumed that the vehicle is heating rate-constrained during atmospheric flight. In this

research the heating rate is modeled using the stagnation point heating rate model from Ref. 30 as

Q̇ = Q̇f (ρ/ρ0)
0.5(v/vc)

3.15, (10)

where Q̇f is a positive constant and vc =
√

µ/Re. The stagnation point heating rate constraint is

then given as

0 ≤ Q̇ ≤ Q̇max. (11)

While in principle Eq. (11) can be implemented directly, it was found in Ref. 20 that it is more

computationally tractable to constrain the natural logarithm of Eq. (11), that is,

−∞ ≤ log Q̇f − 0.5h/H + 3.15 log(v/vc) ≤ log Q̇max. (12)

Finally, during exo-atmospheric flight the only path constraint is that the thrust direction must be

unit vector, that is,

u21 + u22 + u23 = 1. (13)

3.5 Objective Functional

The objective of the optimal control problem is to minimize the fuel consumption during the transfer.

This objective is stated equivalently as maximizing the mass at the final time, that is

J = −m(tf ). (14)

3.6 Optimal Control Problem

The optimal control problem corresponding to the multiple-pass aeroassisted orbital transfer prob-

lem described in Sections 2 and 3 is stated as follows. Determine the trajectory and control of

the vehicle that follows the trajectory event sequence given in Section 3.1 while minimizing the

objective functional of Eq. (14) and satisfying the dynamic constraints of Section 2, the initial and
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terminal conditions of Section 3.2, the interior-point constraints of Section 3.3, and the path con-

straints of Section 3.4. The optimal control aeroassisted orbital transfer problem was solved using

the open-source optimal control software GPOPS25–27 using the nonlinear programming problem

solver SNOPT and the automatic differentiator INTLAB.31 All computations were performed using

MATLAB-R2010b on a MacBook Pro 2.53 GHZ Core 2 Duo running Mac OS X 10.6.7.

4 Results

The optimal control problem described in Section 3 was solved for n = (1, 2, 3) atmospheric passes

with terminal inclinations if = (20, 30, 40) deg and maximum allowable stagnation point heating

rates Q̇max = (∞, 600, 400, 200) W · cm−2. The results are divided into two parts. First, the overall

performance is described both with and without a constraint on the stagnation point heating rate,

while the second set of results shows the structure of the heating rate-unconstrained and heating

rate-constrained optimal trajectories. With regard to the overall performance, the aeroassisted

orbital transfer is compared with an all-propulsive transfer (that is, a transfer where the atmosphere

is not utilized but, instead, the orbit is changed using finite-thrust propulsion). The all-propulsive

transfer consists of a constant thrust powered exo-atmospheric flight phase that starts on the initial

orbit and terminates on the final orbit with the required inclination change. It is noted that the

all-propulsive transfer was also solved using GPOPS.25

4.1 Overall Performance

Figure 2 shows the final mass fraction, m0/m(tf ), as a function of the number of atmospheric

passes, n, and final inclination, if , for Q̇max = (∞, 600, 400, 200) W · cm−2, where n = 0 indicates

the aforementioned all-propulsive transfer. It is seen from Fig. 2(a) that, for a fixed value of if , the

final mass fraction of the aeroassisted orbital transfer is essentially constant as a function of n when

the heating rate is unconstrained. When the heating rate is constrained, less fuel is consumed using
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multiple atmospheric passes over using a single atmospheric pass. Moreover, examining the heating

rate-constrained mass fractions as given in Figs 2(b)–2(d), it is seen that the amount of the benefit

of using multiple atmospheric passes is approximately the same regardless of the value of Q̇max. As

a result, using multiple atmospheric passes consumes less fuel than using a single atmospheric pass.

In addition, Figs. 2(a)–2(d) show that m0/m(tf ) decreases as Q̇max decreases, and that this rate

of decrease is essentially the same regardless of the value of if . Finally, it is seen in all cases that

the fuel consumed using the aeroassisted orbital transfer is significantly less than the fuel consumed

using the all-propulsive (n = 0) transfer.

Next, Fig. 3 shows the total amount of inclination change performed by the atmosphere, ∆iatm,

as a function of Q̇max and if . When the heating rate is unconstrained, ∆iatm is essentially constant

as a function of n. When the heating rate is constrained, however, ∆iatm increases slightly as n

increases. Moreover, it is seen that the slope of ∆iatm as a function of n increases significantly as if

increases. Consistent with the final mass fraction results shown in Figure 2, it is more beneficial to

utilize multiple atmospheric passes when the heating rate is constrained as compared to when the

heating rate is unconstrained.

Suppose now that we define the standard gravity-normalized sensed acceleration (that is, the

g-load) during atmospheric flight as G = qS
mg0

√

C2
D + C2

L. Fig. 4 shows the maximum value of

G, defined as Ḡ, as a function of the number of atmospheric passes, n, and the required final

inclination, if for different values of Q̇max. Fig. 4(a) shows that Ḡ is quite large (Ḡ ≈ 11) for a

one-pass heating rate-unconstrained transfer. On the other hand, increasing to a three-pass heating

rate-unconstrained transfer greatly reduces Ḡ to slightly less than two. In addition, it is seen that

Ḡ is much lower when the heating rate is constrained, ranging from an upper value of Ḡ ≈ 3.5

for (n, Q̇max, if ) = (1, 600 W · cm−2, 40 deg) [see Fig. 4(b)], to a lower value of Ḡ ≈ 0.25 for

(n, Q̇max, if ) = (3, 200 W · cm−2, 20 deg) [see Fig. 4(d)]. Thus, using multiple atmospheric passes

not only reduces fuel consumption when the heating rate is constrained, but also decreases the

structural load on the vehicle.
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4.2 Key Features of Optimal Trajectories

4.2.1 Single-Pass Heating Rate-Unconstrained Solutions

Solutions obtained for a single atmospheric pass (n = 1) with no constraint on heating rate are

now examined. Figure 5(a) shows h vs. v during atmospheric flight for different values of if , where

it is seen that the speed at atmospheric entry is essentially the same regardless of the value of if ,

while the speed at atmospheric exit decreases as if increases. Next, Fig. 5(b) shows h vs. γ during

atmospheric flight for if = (20, 30, 40) deg. While the flight path angle at atmospheric entry is

essentially constant as a function of if , the flight path angle at atmospheric exit increases moderately

as a function of if . The decrease in speed and increase in flight path angle at atmospheric exit are

expected because the vehicle must descend further into the atmosphere as if increases. Moreover,

Fig. 5(c) shows that the maximum heating rate increases as if increases, and that Q̇ is a maximum

when h is a minimum.

Next, Figs. 6(a) and 6(b) show, respectively, the angle of attack, α, and the bank angle, σ,

vs. ∆tatm during atmospheric flight for different values of if . It is seen that the angle of attack

profiles are similar for all values of if with the key exception that for if = 20 deg the angle of

attack does not increase near the end of atmospheric flight. The angle of attack increases for the

larger values of if because the lift required to exit the atmosphere increases as if increases. Next,

it is seen that for all cases the bank angle starts at approximately −180 deg and terminates at

approximately −60 deg. The initial bank angle of −180 deg corresponds to a downward pointing

lift, resulting in the vehicle descending at the start of atmospheric flight. As the vehicle progresses

through atmospheric flight, the bank angle quickly passes from −180 deg to −60 deg such that the

lift direction points upward slightly but has enough of a horizontal component to allow for lateral

motion to change the inclination. A bank angle of approximately −60 deg at atmospheric exit is

consistent with the fact that the vehicle must be ascending as it leaves the atmosphere.
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4.2.2 Multiple-Pass Heating Rate-Unconstrained Solutions

Next, we analyze multiple-pass heating rate-unconstrained solutions. Figure 7 shows h vs. v for

n = 3 and if = (20, 30, 40) deg. It is seen in Fig. 7 that the minimum altitude obtained on any

atmospheric pass is lower than the minimum altitude of an ensuing atmospheric pass. Interestingly,

it is also seen in Fig. 7 that for n = 3 the speed at the start of any intermediate atmospheric

pass is larger than the speed at the terminus of the previous atmospheric pass. This last result

implies that the speed increases during an intermediate exo-atmospheric phase. The reason that

the speed increases between atmospheric passes is that the vehicle needs to thrust during exo-

atmospheric flight in order to have enough energy to effectively utilize the atmosphere during the

ensuing atmospheric pass. Figure 8 shows h vs. v for n = 2 and if = (20, 30, 40) deg. Unlike the

results for n = 3, in the two-pass transfers it is seen in Fig. 8(c) (corresponding to if = 40 deg)

that the speed at the start of an intermediate atmospheric entry may be the same as the speed at

the terminus of the previous atmospheric entry. This last result implies that for n = 2 the vehicle

does not necessarily thrust during the intermediate exo-atmospheric phase.

At first glance it may appear inconsistent that the vehicle always thrusts between atmospheric

passes for n = 3, while it does not always thrust between atmospheric passes for n = 2. In order

to see that these two sets of results are in fact consistent, Tables 3(a) and 3(b) show the thrust

durations during each powered exo-atmospheric segment alongside the total propulsive burn time,

∆tprop, for n = 2 and n = 3. Consistent with the aforementioned entrance speed results for n = 2

and n = 3, it is seen in Tables 3(a) and 3(b) that the thrust durations for n = 2 and n = 3 are

all nonzero with the exception of the second thrusting maneuver for (n, if ) = (2, 40 deg), while all

of the thrust durations for n = 3 are nonzero. For any fixed value of if , however, the total thrust

duration is nearly the same for both n = 2 and n = 3. Consequently, while the distribution of the

thrust maneuvers is somewhat different for n = 2 and n = 3, the total effect of propulsion over the

duration of the transfer is the same. Finally, it is seen in Tables 3(a) and 3(b) that the total thrust
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duration increases as a function of if and this increase in total thrust duration is consistent with

the fact that the vehicle must utilize more fuel when a larger inclination change is required.

4.2.3 Single-Pass Heating Rate-Constrained Solutions

We first examine the heating rate-constrained solutions for a single-pass transfer, n = 1. Fig. 9

shows h vs. v during atmospheric flight for n = 1 for various values of Q̇max and if . It is seen

in Fig. 9 that the change in speed during atmospheric flight, ∆vatm, decreases as Q̇max decreases

and increases as if increases. It is expected that ∆vatm will increase with if when Q̇max is not

constrained because increasing the final inclination results in an increase in lift which, in turn,

increases the drag during atmospheric flight. Fig. 9 shows, however, that ∆vatm increases with if

even when the heating rate is constrained. The increase in ∆vatm in the heating rate-constrained

case is due the following combination of effects. First, it is seen in Table 4(a) that in all cases,

except Q̇max = 600W · cm−2, the heating rate-constrained atmospheric flight duration decreases for

n = 1. Examining Fig. 9, it is seen that this decrease in flight duration corresponds to an increase

in the speed at atmospheric entry. Because in these cases the speed at atmospheric entry increases

with if , the drag also increases with if during atmospheric flight, thereby increasing ∆vatm. It is

seen from Fig. 9, however, that for the particular case where Q̇max = 600 W · cm−2, the speed at

atmospheric entry remains is essentially the same for all values of if . Consequently, the increase

in ∆vatm as a function of if for Q̇max = 600 W · cm−2 is due to the increase in the duration of the

atmospheric flight phase.

Fig. 10 shows another interesting feature of the single-pass heating rate-constrained solutions,

namely, that when Q̇ is constrained the atmospheric flight phase contains an equilibrium glide

segment where the vehicle changes altitude at nearly constant flight path angle. Examining Fig. 11,

it is seen that the equilibria glide segments seen in Fig. 10 coincide with the vehicle attaining its

maximum allowable heating rate during atmospheric flight. In particular, the constraint on the

heating rate limits the depth to which the vehicle can descend into the atmosphere and causes the
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vehicle to follow equilibrium glide during a heating rate-constrained entry.

4.2.4 Multiple-Pass Heating Rate-Constrained Solutions

We now examine the multiple-pass heating rate-constrained solutions. Similar to the single-pass

heating rate-constrained solutions, the atmospheric flight phases of the multiple-pass trajectories

also contain equilibria glide segments. The structure of the occurrence of these equilibria glide

segments is shown in Tables 5(a) and 5(b), where it is seen that the number of equilibria glide

segments increases as Q̇max decreases and as if increases. The fact that the vehicle prefers to fly

along an equilibrium glide segment when the heating rate is increasingly constrained is consistent

with the feature that the vehicle wants to utilize the atmosphere as much as possible. As the

maximum allowable heating decreases, the vehicle must fly along equilibrium glide more often in

order to increase the integrated effect of lift during atmospheric flight, because the integrated lift

effect increases by flying at the maximum allowable heating rate (that is, flying along an equilibrium

glide segment). Furthermore, a clear structure is seen in the atmospheric flight phases that contain

equilibria glide segments. Specifically, the equilibria glide segments appear on the first atmospheric

pass for larger values of Q̇max and smaller values of if , on the first and second atmospheric passes

for moderate values of Q̇max and if , and on all atmospheric passes for small values of Q̇max and

large values of if . Examples of limiting cases for n = 3 atmospheric passes, that is, (if , Q̇max) =

(20 deg, 600W · cm−2) and (if , Q̇max) = (40 deg, 200W · cm−2), are shown in Fig. 12, where is is seen

that the solutions for (if , Q̇max) = (20 deg, 600W · cm−2) and (if , Q̇max) = (40 deg, 200W · cm−2)

contain zero and three equilibria glide segments, respectively. The manner in which the equilibria

glide segments appear indicates the preference of the vehicle to utilize the first atmospheric pass

as much as possible to change inclination, while utilizing subsequent atmospheric passes only when

necessary as either Q̇max decreases or if increases.
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5 Conclusions

The problem of minimum-fuel finite-thrust small spacecraft minimum-fuel heating rate-constrained

aeroassisted orbital transfer between two low-Earth orbits with inclination change has been con-

sidered. The trajectory event sequence was described in detail for a high lift-to-drag ratio vehicle

with small mass and moderate thrust capability. The aeroassisted orbital transfer was posed as a

multiple-phase optimal control problem and was solved using an established open-source general-

purpose optimal control software. It was found that the final mass fraction was greater using the

aeroassisted orbital transfer over using an all-propulsive transfer. In addition, the final mass fraction

was essentially constant as a function of the number of atmospheric passes when the heating rate

was unconstrained, while for the heating rate-constrained case the final mass fraction increased as a

function of the number of atmospheric passes. The key features of the optimal solutions were then

analyzed for both heating rate-unconstrained and heating rate-constrained cases. It was found for

heating rate-unconstrained solutions that the minimum altitude during any atmospheric pass was

lower than on an ensuing atmospheric pass, and that the heating rate was a maximum at the point

where the altitude was a minimum. For single-pass heating rate-constrained solutions it was found

during atmospheric flight that the vehicle would fly along an equilibrium glide segment, where the

equilibrium glide segment coincided with an active heating rate constraint. For multiple-pass heat-

ing rate-constrained solutions the sequence and frequency of occurrence of equilibria glide segments

was determined as a function of the maximum allowable heating rate and the terminal inclination.

The results of this study show that low-Earth orbital transfer of a small spacecraft with moderate

thrust can be accomplished in a more fuel-efficient manner using an aeroassisted orbital transfer as

compared with using an all-propulsive orbital transfer.
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Figure 1: Schematic of Aeroassisted Orbital Transfer Trajectory Event Sequence.
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Figure 2: Final Mass Fraction, m0/m(tf ), vs. n for Q̇max = (∞, 600, 400, 200) W · cm−2, and
if = (20, 30, 40) deg.
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Figure 3: Total Atmospheric Inclination Change, ∆iatm, vs. n for Q̇max = (∞, 600, 400, 200) W·cm−2,
and if = (20, 30, 40) deg.
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Figure 4: Maximum Standard Gravity-Normalized Specific Force, Ḡ, vs. n for Q̇max =
(∞, 600, 400, 200) W · cm−2, and if = (20, 30, 40) deg.

23



 

 

if = 20 deg

if = 30 deg

if = 40 deg

h
(k

m
)

v (km · s−1)
76 8.57.56.5 8 9

20

40

60

80

100

120

(a) h vs. v.

 

 

if = 20 deg

if = 30 deg

if = 40 deg

h
(k

m
)

γ (deg)
0-4 -2 642 8

20

40

60

80

100

120

(b) h vs. γ.

 

 

if = 20 deg

if = 30 deg

if = 40 deg

h (km)

Q̇
(W

·
cm

−
2
)

0

20 40 60 80 100 120

500

1000

1500

2000

(c) Q̇ vs. h.

Figure 5: h, vs. v, h, vs. γ, and Q̇, vs. h During Heating-Rate Unconstrained Atmospheric Flight
for n = 1 and if = (20, 30, 40) deg.
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Figure 6: α vs. ∆tatm and σ vs. ∆tatm During Heating Rate-Unconstrained Atmospheric Flight for
n = 1 and if = (20, 30, 40) deg.
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(a) h vs. v for if = 20 deg.
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(b) h vs. v for if = 30 deg.
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(c) h vs. v for if = 40 deg.

Figure 7: h, vs. v During Heating Rate-Unconstrained Atmospheric Flight for n = 3 and if =
(20, 30, 40) deg.
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Figure 8: h vs. v During Heating Rate-Unconstrained Atmospheric Flight for n = 2 and if =
(20, 30, 40) deg.
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Figure 9: h vs. v for n = 1, Q̇max = (∞, 600, 400, 200) W · cm−2, and if = (20, 30, 40) deg.
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Figure 10: h vs. γ for n = 1, Q̇max = (∞, 600, 400, 200) W · cm−2, and if = (20, 30, 40) deg.
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(b) h vs. Q̇ and if = 30 deg.
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Figure 11: Q̇, vs. h for n = 1, Q̇max = (∞, 600, 400, 200) W · cm−2, and if = (20, 30, 40) deg.
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(b) h vs. γ for (n, if , Q̇max) = (3, 20 deg, 600 W · cm−2).
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(c) h vs. v for (n, if , Q̇max) = (3, 40 deg, 200 W · cm−2).
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(d) h vs. γ for (n, if , Q̇max) = (3, 40 deg, 200 W · cm−2).

Figure 12: h vs. v and h vs. γ for n = 3, (Q̇max, if ) = (600 W · cm−2, 20 deg), and (Q̇max, if ) =
(200 W · cm−2, 40 deg).
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Table 2: Physical Constants and Vehicle Data.
Parameter Units Value

g0 m · s−2 9.80665
Re m 6378145
µ m3 · s−2 3.986012× 1014

Isp s 310
T N 2500
hatm km 110
A m2 1
m0 kg 818
ρ0 kg · m−3 1.225
β m−1 1.38889× 10−4

K No Units 1.4
CLα No Units 0.5699
CD0 No Units 0.032

Q̇f W · cm−2 19987
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Table 3: Thrust Phase Durations, ∆t
(k)
prop (s), During Exo-Atmospheric Flight for n = (2, 3) and

if = (20, 30, 40) deg.

(a) Thrust Phase Durations, ∆t
(k)
prop (s), for n = 2.

if (deg) ∆t
(1)
prop (s) ∆t

(2)
prop (s) ∆t

(3)
prop (s) ∆tprop (s)

if=20 276.5 82.7 9.8 369.0
if=30 286.9 192.4 11.9 491.2
if=40 260.4 0.0 308.0 568.4

(b) Thrust Phase Durations, ∆t
(k)
prop (s), for n = 3.

if (deg) ∆t
(1)
prop (s) ∆t

(2)
prop (s) ∆t

(3)
prop (s) ∆t

(4)
prop (s) ∆tprop (s)

20 275.1 72.8 13.5 6.7 368.2
30 277.9 130.5 67.3 7.9 483.6
40 281.9 175.2 115.6 7.7 580.4
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Table 4: Total Atmospheric Flight Duration, tatm (s), for n = (1, 2, 3), Q̇max = (∞, 600, 400, 200) W·

cm−2, and if = (20, 30, 40) deg.

(a) Total Atmospheric Flight Duration, tatm (s), for n = 1.

Q̇max (W · cm−2) if = 20 deg if = 30 deg if = 40 deg
∞ 438.8 372.4 360.5
600 612.1 683.5 737.5
400 990.4 875.9 759.2
200 1174.0 1053.6 961.0

(b) Total Atmospheric Flight Duration, tatm (s), for n = 2.

Q̇max (W · cm−2) if = 20 deg if = 30 deg if = 40 deg
∞ 1680.4 1251.1 1079.1
600 1762.8 1367.8 1204.4
400 1940.5 1818.5 1730.8
200 2494.6 2360.4 2195.3

(c) Total Atmospheric Flight Duration, tatm (s), for n = 3.

Q̇max (W · cm−2) if = 20 deg if = 30 deg if = 40 deg
∞ 3178.7 2235.9 1876.8
600 3244.5 2328.9 2023.0
400 3307.3 2571.5 2507.0
200 3532.2 3595.5 3530.4

34



Table 5: Sequence and Frequency of Occurrence of Atmospheric Flight Phases Containing Equilibria
Glide Segments for n = (2, 3), Q̇max = (600, 400, 200) W · cm−2, and if = (20, 30, 40) deg.

(a) Equilibria Glide Segment Sequence and Frequency of Occurrence for n = 2.

Q̇max (W · cm−2) if = 20 deg if = 30 deg if = 40 deg
600 None First Pass First and Second Pass
400 First Pass First and Second Pass First and Second Pass
200 First and Second Pass First and Second Pass First and Second Pass

(b) Equilibria Glide Segment Sequence and Frequency of Occurrence for n = 3.

Q̇max (W · cm−2) if = 20 deg if = 30 deg if = 40 deg
600 None None None
400 First Pass First Pass First and Second Pass
200 First Pass First, Second, and Third Pass First, Second, and Third Pass
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